Мы ожидаем, что методы принятия решений будут разумными. Допустим, некий метод провозглашает кандидата X победителем на основании определенного профиля предпочтений. Допустим также, что другой кандидат, Y, снимает свою кандидатуру (и ни один избиратель не меняет своего мнения). В таком случае X должен остаться победителем. Если метод удовлетворяет такому условию, это и есть
Подумаем в том же ключе о правиле большинства
. Для рассмотренного выше профиля предпочтений этот метод провозглашает победителем A. Теперь представим, что C снимает кандидатуру. Профиль предпочтений меняется следующим образом:На сей раз победителем становится кандидат B! Таким образом, правило большинства
не удовлетворяет критериюМожет быть, правило первых двух приоритетов
лучше? На основе того же профиля предпочтений победителем становится C. Что произойдет, если A сойдет с дистанции? Останется всего два кандидата! Тут мы заходим в тупик. Вот вам головоломка: попробуйте составить такой профиль предпочтений при голосовании за четырех кандидатов (A, B, C, D), чтобы правило первых двух приоритетов провозглашало победителем A, но если бы из гонки выбыл D, победителем стал бы B. Ответ я дам в конце главы.Наконец, протестируем метод Борда
. Он провозглашает победителем B, но если C выбывает, победителем становится A.Ни один из трех методов не удовлетворяет критерию
Спокойствие, только спокойствие! Есть
Возникает вопрос: какой из справедливых методов голосования удовлетворяет критерию
Теорема невозможности Эрроу носит несколько технический характер, но ее смысл заключается в том, что при наличии более чем двух кандидатов ни один метод не удовлетворяет базовому критерию
Как нам теперь быть? Если все методы «несправедливы», каким из них нам руководствоваться? Или просто нужно отбросить критерий
Проблема методов, не удовлетворяющих последнему критерию, заключается в том, что они поощряют избирателей голосовать иначе, чем они планировали изначально, если какой-нибудь кандидат портит шансы вероятного победителя. Например, вам по душе кандидаты A и B, но вы питаете отвращение к кандидату C. Вы склоняетесь к тому, чтобы голосовать за A, но внезапно узнаете из выпуска новостей, что шансы A на победу невелики. За кого вы будете голосовать? При подсчете голосов по правилу большинства
(и при использовании некоторых других методов) неразумно голосовать за A, хотя изначально вы планировали поступить именно так. Если вы проголосуете за A, то отнимете один голос у B.Если A не выбывает из игры, а избиратели, чьи изначальные приоритеты совпадают с вашими, не меняют своего решения и все-таки голосуют за A, это отнимает голоса у B и обеспечивает победу C. Но если A по тем или иным причинам выбывает из игры, вы голосуете за B, и его шансы на победу возрастают.
Если метод принятия решений удовлетворяет критерию
Глава 23
Парадокс Ньюкома
Человеческое поведение предсказуемо. В самом деле: многие социальные науки, от экономики до культурной антропологии, строятся на том факте, что мы можем видеть закономерности в человеческой деятельности и предсказывать поступки людей (пусть даже с разными степенями уверенности).
В этой главе я расскажу о парадоксе Ньюкома[228]
. Он касается предсказания человеческого поведения и приводит к умопомрачительным выводам[229].