Если использовать этот сомнительный метод, то можно прийти к такому заявлению: «Находиться на военной службе во время открытого конфликта (например, во время войны в Афганистане) гораздо безопаснее, нежели в тылу». Ход рассуждения будет таким: в 2010 году погибло 3482 американских военнослужащих[49]
. Исходя из общего числа военнослужащих — а их 1 431 000 человек, — получим 2,4 смертельных случая на тысячу человек[50]. На территории Соединенных Штатов количество смертей в 2010 году составило 8,2 на тысячу человек[51]. Иными словами, находиться на службе в военной зоне в три с лишним раза безопаснее, чем жить в Соединенных Штатах.Давайте разберемся. Выборки очень разные, поэтому их нельзя сравнивать «в лоб». В действующей армии служат молодые здоровые солдаты, в их распоряжении питательные обеды и хорошее медицинское обслуживание. Население Соединенных Штатов весьма разнообразно: здесь проживают и старики, и больные, и гангстеры, и наркоманы, и любители погонять на мотоциклах, и любители игры в «ножички», а также огромное количество тех, у кого нет ни питательных обедов, ни медицинского обслуживания[52]
. Смертность среди этих людей высока, где бы они ни находились. А действующие военнослужащие не все находятся в зоне военных действий — некоторые проходят службу на безопасных базах, сидят в офисах Пентагона или же на призывных пунктах в торговых центрах районного масштаба.Новостной журнал U.S. News & World Report как-то опубликовал статью, в которой приводилось соотношение демократов и республиканцев начиная с 1930-х годов. Проблема в том, что за это время принципиально поменялась сама процедура формирования выборки. В 1930-х и 1940-х респондентов отбирали в личном разговоре, а также с помощью адресных списков, созданных на основе телефонных справочников. К 1970-м опросы стали делать исключительно по телефону. В начале XX века при формировании выборки скорее учитывали тех, у кого был стационарный телефон, то есть людей с достатком, а они — во всяком случае, в то время — имели обыкновение голосовать за республиканцев. К 2000-м перешли на мобильные телефоны, из-за чего произошел явный перекос в сторону молодежи, отдававшей свои голоса, как правило, за демократов. Мы на самом деле не знаем, изменилась ли пропорция демократов и республиканцев с 1930-х годов, так как выборки не поддаются никакому сравнению. Нам кажется, мы изучаем одно, а на самом деле — другое.
Похожая проблема возникает, когда говорят о снижении уровня смертности в результате мотоциклетных аварий по сравнению с тем, что было три десятилетия назад. Сейчас в сводках упоминается больше трехколесных мотоциклов, а в прошлом столетии доминировали двухколесные модели; можно вспомнить тот факт, что когда-то шлемы были не обязательны, сейчас же их наличие в большинстве штатов оговаривается законом.
Остерегайтесь меняющихся выборок, когда делаете выводы! Журнал U.S. News & World Report (да, снова он) сообщил, что за прошедший 20-летний период увеличилось число врачей, при этом средняя зарплата значительно снизилась[53]
. Что же из этого следует? Вы можете сделать вывод, что сейчас не лучшее время, чтобы обучаться профессии врача, потому что их теперь пруд пруди (а избыточное предложение на рынке стало причиной снижения зарплаты). Возможно, это и так, но в защиту этого утверждения нет ни одного доказательства.Вполне правдоподобно звучит заявление, что благодаря сужению специализации и росту технологий, наблюдаемым на протяжении последних 20 лет, у врачей появилось больше профессиональных возможностей — как следствие, на рынке стало больше доступных вакансий, особенно на фоне увеличения общего числа врачей. Так что же насчет снижения зарплаты? Возможно, дело в увольнении пожилых специалистов, которых заменили более молодые, согласные — в силу отсутствия опыта — на более низкую зарплату. Но и таких доказательств тоже нет. Важная составляющая статистической грамотности — понимать, что некоторые данные, подобно тем, что мы рассмотрели в этом примере, просто нельзя интерпретировать.
Иногда вот такая путаница с котлетами и мухами происходит от сравнения противоречивых подвыборок — потому что вы проигнорировали какую-то деталь, сочтя ее неважной. Например, отбирая пробы кукурузы на поле, обработанном новым удобрением, вы можете не обратить внимания на то, что некоторые початки получали больше солнца, а некоторые — больше воды. Или при исследовании влияния потока машин на частоту проведения ремонтных работ от вашего внимания может ускользнуть тот факт, что на определенных улицах больше водостоков, чем на других, и потому там чаще возникает необходимость ремонтировать асфальтовое покрытие.
Говорят, что происходит объединение выборок, когда данные о разнородных объектах соединяют в одну категорию, как в случае с яблоками и грушами. Если вас интересует количество шестеренок, выпущенных с дефектом, можно объединить данные по разным их видам и получить необходимые вам цифры в зависимости от того, какую цель вы преследуете.