Сегодня большое распространение получили цифровые измерительные приборы, которые показывают на дисплее значения напряжения, тока, частоты, сопротивления и так далее — в цифровом виде. Информация сразу выдается в нужных единицах, например в микровольтах или килоомах. Не нужно задумываться о коэффициентах пересчета показаний, о цене деления шкалы. Все эти операции выполняются цифровым прибором автоматически. Удобно? Кто бы сомневался, что цифровая техника может творить чудеса!
Но возникает важный вопрос: если аналоговая и цифровая техника столь далеко отстоят друг от друга по принципам построения, то каким образом с помощью всего двух уровней электрического сигнала можно измерять аналоговые величины? Очевидно, необходимо осуществить преобразование одного сигнала в другой.
Представим, что в нашем арсенале есть «черный ящик», называемый аналого-цифровым преобразователем. (АЦП), имеющий один вход и несколько выходов, как показано на рис. 14.40,
Рис. 14.40.
Полученный код можно занести в память компьютера, преобразовать его в десятичные цифры и выводить на индикатор. Достоинство такого способа заключается в возможности запоминания не только однократного измерения, но и серии измерений, скажем, зафиксировать изменение сопротивления в течение суточных колебаний температуры.
А возможно ли обратное преобразование цифрового сигнала в аналоговый?
Да, и оно встречается очень часто. Вспомните хотя бы музыкальные компакт-диски, отличающиеся потрясающим качеством звуковоспроизведения, отсутствием «старения» с течением времени, которое наблюдается у «аналоговых» виниловых дисков и магнитной ленты. Сигнал хранится на компакт-диске в виде кодовой последовательности и, поданный на
Рис. 14.41.
Выходной сигнал ЦАП, в соответствии с законом конечности кодовых комбинаций, имеет ступенчатую форму, но в случае с компакт-диском количество кодовых комбинаций выбирается таким, чтобы эти «ступеньки» не были заметны на слух.
Внешне ЦАП и АЦП выглядят как обычные микросхемы, их даже можно спутать друг с другом по изображению на принципиальных схемах, настолько они похожи! Различать эти микросхемы можно, как всегда, по маркировке на корпусе и по надписям на графических изображениях в принципиальных схемах: D/А (ЦАП), А/D (АЦП).
Преобразователи, отличаются друг от друга по скорости преобразования сигнала в код и кода в сигнал, точности преобразования, температурной стабильности. В настоящее время разработаны АЦП, способные преобразовать в коды сигнал с частотой в сотни МГц.
Преобразователи с высокой степенью стабильности и точности считаются уникальными, дорогостоящими элементами, поэтому перед созданием конкретного устройства с применением преобразователей надо прежде всего оценить требования к точности и по возможности использовать не высокоточные элементы, а стандартные.
Важным параметром ЦАП и АЦП является их разрядность — количество бит цифрового кода, выдаваемого на выходе ЦАП или получаемого со входа АЦП. Чем выше разрядность, тем с более высокой точностью можно осуществлять преобразования сигналов. Широко распространены 8- и 10-разрядные преобразователи. ЦАП и АЦП с разрядностью более 12 бит считаются высокоточными, а следовательно, дорогостоящими.
В последнее время преобразователи ЦАП и АЦП, встроенные в специальное устройство —
Рис. 14.42.