Читаем Путеводный нейрон. Как наш мозг решает пространственные задачи полностью

Но почему? В XX веке Джейн Джейкобс, городской активист и писательница, которая много наблюдала за поведением жителей Нью-Йорка на улицах, отмечала: «Думаю, людей потому привлекают края, что там интереснее всего»[71]. Немало значит и безопасность. В эксперименте с лабиринтом венгерские психологи обнаружили, что люди, испытывающие страх, больше времени проводят по краям, прежде чем отваживаются выйти на середину. И еще у них дольше формируется когнитивная карта пространства, хотя непонятно, в чем причина, – то ли они меньше времени тратят на разведку, то ли страх ослабляет способность к пространственному восприятию, как полагают многие психологи и спасатели[72].

Границы связывают нас с миром и указывают на его структуру. Кроме того, они чрезвычайно полезны для ориентирования. В 1980-х годах Кен Чен, нейробиолог из Сассекского университета[73], обнаружил, что дезориентированные крысы, пытаясь понять, где они находятся и как найти еду, прежде любых других подсказок (визуальные ориентиры, запахи и прочее) использовали геометрическую форму коробки – другими словами, расположение ее границ. Чен помещал своих крыс в черную прямоугольную коробку с белой полосой вдоль одной из внутренних стен и приучал их находить еду в определенном углу. Когда животных выпускали точно в такую же коробку, они часто совершали ошибку и начинали искать еду в противоположном углу по диагонали – то есть игнорировали белую полосу и ориентировались на геометрию (в прямоугольной коробке каждый угол имеет зеркальное отображение напротив)[74].

С точки зрения эволюции животным имеет смысл ориентироваться на границы в окружающей среде, ведь пределы обладают протяженностью и мало меняются. Но каким образом мозг так эффективно встраивает их в пространственную память, в когнитивную карту? В своих первых экспериментах Джон О’Киф отмечал, что поля места привязаны к геометрии окружающего пространства, что помогает объяснить поведение дезориентированных крыс Чена. В 1996 году О’Киф и его коллега Нил Бёрджесс разработали эксперимент для проверки этой связи. Желая узнать, что произойдет с полем места при изменении формы окружающей среды, они поместили крысу в квадратную коробку, а затем расширили ее в одном направлении, превратив в прямоугольную. Поле места, за которым они наблюдали, растягивалось вместе со стенками коробки – другими словами, нейрон места возбуждался не только в маленьком участке в левом верхнем углу, как в то время, когда коробка сохраняла квадратную форму, но и в расширенной, похожей на червя области, часть которой протянулась вдоль верхней стенки[75].

Это открытие изменило взгляды О’Кифа, Бёрджесса и их коллег на нейроны места. Поскольку схемы возбуждения этих нейронов однозначно связаны с геометрией пространства, нейробиологи сделали вывод, что эти клетки должны получать информацию о границах откуда-то еще – возможно, от нейронов другого типа, чья задача, по всей видимости, вычислить положение животного относительно границ и передать данные в нейроны места, помогая последним определить местоположение животного. Ученые назвали эти клетки «граничными векторными клетками» (англ. boundary vector cells)[76]. Тринадцать лет спустя, в 2009 году, Колин Левер, нейробиолог из Университета Лидса[77], обнаружил их в соседней с гиппокампом области мозга крыс, которая называется основанием гиппокампа[78]. Это не осталось незамеченным: в науке мало что так радует, как сбывшиеся прогнозы. Более того, чувствительные к границам нейроны недавно были найдены и в основании гиппокампа людей[79].


Граничные векторные клетки (или просто «нейроны границы», как их обычно называют), открытые Левером, работают в точности так, как было предсказано. Так, у животных типичный нейрон границы в основании гиппокампа активизируется, когда животное находится на определенном расстоянии и в определенном направлении от неким образом ориентированной границы. Например, нейрон границы «А» возбудится, как только животное окажется в 5 сантиметрах к востоку от границы, ориентированной в направлении «север – юг», а нейрон границы «В» – когда оно будет в 20 сантиметрах к северу от границы, ориентированной в направлении «восток – запад», и так далее[80]. Таким образом, в отличие от нейронов места, которые возбуждаются в определенных точках или на участках нечеткой формы, нейроны границы возбуждаются внутри вытянутых полос, схожих с полями страницы: если вы идете вдоль здания, нейрон границы в основании вашего гиппокампа будет все время активен (как и на обратном пути, поскольку на нее не влияет направление движения). Если чуть отодвинуться от стены здания, возбуждаться будет другой нейрон.

Перейти на страницу:

Похожие книги

Введение в поведение. История наук о том, что движет животными и как их правильно понимать
Введение в поведение. История наук о том, что движет животными и как их правильно понимать

На протяжении всей своей истории человек учился понимать других живых существ. А коль скоро они не могут поведать о себе на доступном нам языке, остается один ориентир – их поведение. Книга научного журналиста Бориса Жукова – своего рода карта дорог, которыми человечество пыталось прийти к пониманию этого феномена. Следуя исторической канве, автор рассматривает различные теоретические подходы к изучению поведения, сложные взаимоотношения разных научных направлений между собой и со смежными дисциплинами (физиологией, психологией, теорией эволюции и т. д.), связь представлений о поведении с общенаучными и общемировоззренческими установками той или иной эпохи.Развитие науки представлено не как простое накопление знаний, но как «драма идей», сложный и часто парадоксальный процесс, где конечные выводы порой противоречат исходным постулатам, а замечательные открытия становятся почвой для новых заблуждений.

Борис Борисович Жуков

Зоология / Научная литература