Р. Гук и Д. Мэйоу сделали еще шаг вперед к изучению механизмов окисления. Гук исследовал окисление металлов в разреженном воздухе и пришел к выводу, что в этом процессе играет роль не весь воздух, а особые "воздушные частицы", которые имеют важное значение и для горения. Мэйоу назвал эти частицы "селитряный воздух", поскольку установил, что такие специфические частицы содержатся и в селитре. Наблюдая горение в замкнутом пространстве (под стеклянным колоколом, погруженным в воду), Мэйоу установил, что в этом процессе принимает участие лишь четвертая часть воздуха.
Если рассматривать результаты этих исследований с точки зрения химика второй половины XX в., то трудно удержаться, чтобы не приписать Мэйоу открытие кислорода и понимание механизма процесса горения. В таком случае создание теории флогистона оказывается шагом назад. Однако взаимосвязи ни в истории химии, ни в общем развитии теоретического знания, отнюдь не были простыми. Для становления научной химии нужна была революция — такая же, какую произвело в астрономии создание системы Коперника. Мэйоу, который, казалось бы, пошел дальше других химиков в познании процессов горения, на самом деле оставался в плену устаревших представлений. Для него металл, например, все еще был соединением, которое "разделялось" при горении. Мэйоу приписывал "селитряному воздуху" следующие свойства: он должен разлагать металл при прокаливании, чтобы освобождались "горючие частицы". Частицы "селитряного воздуха" в процессах горения должны были соединяться с частицами соли в металле (в то время считалось, что металлы состоят из трех первоэлементов — серы, ртути и соли). За счет такого соединения происходит увеличение веса [массы] металлической извести [оксида]. Таким образом, Джону Мэйоу не удалось усовершенствовать существовавшие ранее представления о горении. Обнаруженные им факты Мэйоу не сумел объяснить в свете основных положений химии. Прогресс, достигнутый в развитии химии благодаря созданию флогистонной теории, состоял в том, что Шталь предложил механизмы реакций окисления — восстановления и эмпирически попытался доказать их, рассмотрел отношения между начальными и конечными продуктами прямых и обратных химических реакций [93, с. 103]. После открытия Шталя окисление и восстановление стали рассматриваться как взаимосвязанные процессы. Доказательством этого послужили эксперименты по прокаливанию (окислению) металла и его восстановлению углем, а также по превращению серы при горении в диоксид и триоксид серы — с одной стороны, и восстановлению серы из оксидов — с другой. Флогистон при этом рассматривался как вещество, состоящее из мельчайших "частиц". Так же, как "частицы" тепла и света, "корпускулы флогистона" считалось невозможным обнаружить "вещественно". По мнению Шталя, воздух был лишь объектом, который помогал выделять частицы флогистона из различных веществ и поглощать их ("удерживать в себе").
Приборы для демонстрации изменений в составе воздуха (из работы Дж. Мэйоу). Слева направо — при погружении железа в азотную кислоту; при сжигании камфоры с помощью нагревательной линзы; при дыхании животного (все опыты проводятся в закрытых объемах воздуха)
Шталь объяснял процессы окисления и восстановления участием в них флогистона. Поэтому, в отличие от взглядов Мэйоу, для теории Шталя не было важным рассмотрение роли воздуха в процессе окисления. Наблюдение над повышением веса [массы] прокаливаемого металла для Шталя было тесно связано с проблемой "отрицательного веса" флогистона[79]
. Несмотря на одностороннюю, лишь качественную характеристику процессов, происходящих при горении, теория флогистона имела громадное значение для объяснения и систематизации именно этих превращений.М. В. Ломоносов (сформулировал в общем виде закон сохранения массы и оказал большое влияние на развитие химии и химической промышленности в России).
[80]Однако с течением времени эта теория все чаще стала подвергаться критике именно в связи с экспериментальными данными о количественных соотношениях веществ, вступающих в химические реакции. М. В. Ломоносов обращал внимание химиков на роль воздуха в процессах прокаливания металлов. Он предпочел представления Мэйоу теории флогистона, так как считал, что теория флогистона не позволяет объяснить процессы, происходящие при прокаливании металлов, в соответствии с законом сохранения материи. Но доказать это экспериментально и теоретически первым сумел А. Лавуазье, который, как мы уже отмечали, сначала также был сторонником учения о флогистоне.
Механизм реакций