11 printIntegerTable(fibonacci, 10);
12 return 0;
13 }
Ирония в том, что, хотя С++ не позволяет выбирать между передачей массива по ссылке и передачей по значению, он предоставляет некоторую свободу синтаксиса при объявлении типа параметра. Вместо const int *table можно было бы также написать const int table[] для объявления в качестве параметра указателя на константный тип int. Аналогично параметр argv функции main() можно объявлять как char *argv[] или как char **argv.
Для копирования одного массива в другой можно пройти в цикле по элементам массива:
const int fibonacci[NFibonacci] = { 0, 1, 1, 2, 3, 5, 8, 13, 21, 34 };
int temp[NFibonacci];
for (int i = 0; i < NFibonacci; ++i)
temp[i] = fibonacci[i];
Для базовых типов, таких как int, можно также использовать функцию std::memcpy(), которая копирует блок памяти. Например:
memcpy(temp, fibonacci, sizeof(fibonacci));
При объявлении массива С++ его размер должен быть константой[10]. Если необходимо создать массив переменного размера, это можно сделать несколькими способами:
• Выделять память под массив можно динамически:
int *fibonacci = new int[n];
Оператор new [] выделяет последовательные участки памяти под определенное количество элементов и возвращает указатель на первый элемент. Благодаря принципу «эквивалентности указателей и массивов» обращаться к элементам можно с помощью указателей: fibonacci[0], fibonacci[1], … fibonacci[n — 1]. После завершения работы с массивом необходимо освободить занимаемую им память, используя оператор delete []:
delete [] fibonacci;
• Можно использовать стандартный класс std::vector:
#include
using namespace std;
vector fibonacci(n);
Обращаться к элементам можно с помощью оператора [], как это делается для обычного массива С++. При использовании вектора std::vector (где T — тип элемента, хранимого в векторе) можно изменить его размер в любой момент с помощью функции resize(), и его можно копировать, применяя оператор присваивания. Классы, содержащие угловые скобки в имени, называются шаблонными классами.
• Можно использовать класс Qt QVector:
#include
QVector fibonacci(n);
Программный интерфейс вектора QVector очень похож на интерфейс вектора std::vector, кроме того, он поддерживает возможность прохода по его элементам с помощью ключевого слова Qt foreach и использует неявное совмещение данных («копирование при записи») как метод оптимизации расхода памяти и повышения быстродействия. В главе 11 представлены классы—контейнеры Qt и объясняется их связь со стандартными контейнерами С++.
Может возникнуть соблазн применения везде векторов std::vector или QVector вместо встроенных массивов. Тем не менее полезно иметь представление о работе встроенных массивов, потому что рано или поздно вам может потребоваться очень быстрый программный код или придется использовать существующие библиотеки С.
Символьные строки
Основной способ представления символьных строк в С++ заключается в применении массива символов char, завершаемого нулевым байтом ('\0'). Следующие четыре функции демонстрируют работу таких строк:
01 void hello1()
02 {
03 const char str[] = {
04 'H', 'e', 'l', 'l', 'o', ' ', 'w', 'o', 'r' 'l', 'd', '\0'
05 };
06 cout << str << endl;
07 }
08 void hello2()
09 {
10 const char str[] = "Hello world!";
11 cout << str << endl;
12 }
13 void hello3()
14 {
15 cout << "Hello world!" << endl;
16 }
17 void hello4()
18 {
19 const char *str = "Hello world!";
20 cout << str << endl;
21 }