Поэтому, если луч на экране трубки начнет быстро перемещаться по горизонтали, то будет видна сплошная горизонтальная линия. Если же заставить электронный луч двигаться по экрану так, как движется взгляд при чтении книги, то на экране возникнет светящийся прямоугольник, составленный из многих горизонтальных линий — строк.
Если при движении по строкам интенсивность луча изменится, то яркость экрана в разных местах будет неодинакова. Значит, управляя интенсивностью луча по определенному закону, можно получить на экране световое изображение. Именно это и происходит во время телевизионного сеанса.
При передаче спектакля из студии телевизионного центра оператор «нацеливает» на артистов объектив аппарата, напоминающего большую фотокамеру. Это на самом деле фотокамера, только в ней световое изображение проектируется не на матовое стекло и фотопластинку, а на особый светочувствительный экран, обладающий одним замечательным свойством: под воздействием света на экране появляются электрические заряды.
По светочувствительному экрану, как и в обычной «приемной» телевизионной трубке, движется тонкий электронный луч. Интенсивность этого луча все время постоянна. Касаясь экрана, луч оставляет на нем свой заряд, который складывается с зарядом, возникающим под воздействием света, и передается по проводам к телевизионному радиопередатчику. Освещенность экрана в разных местах неодинакова. Поэтому и величина заряда также различна. Колебания заряда передаются на управляющую сетку лампы радиопередатчика и вызывают периодическое изменение силы его сигналов.
Соответственно изменяется и размах электрических колебаний в телевизионном приемнике. Поступая на управляющую сетку электронно-лучевой трубки, электрические колебания изменяют интенсивность электронного луча и яркость световой точки на экране.
Движение электронных лучей в передающей «камере» и «приемных» трубках строго согласовано и происходит с одинаковой скоростью. В любой момент лучи падают на одни и те же места экранов. Поэтому световая картина на экране приемных трубок в точности воспроизводит изображение, спроектированное на светочувствительный экран «передающей» камеры.
Чем больше число строк, по которым «бегает» электронный луч, тем выше четкость изображения. Картина на экране телевизора напоминает мозаику, а мозаичное изображение тем совершеннее, чем меньше размер образующих его «зерен».
В Советском Союзе передача телевидения происходит с четкостью 625 строк.
Современные высококачественные телевизионные передачи ведутся только на ультракоротких волнах. Это объясняется тем, что сигналы телевидения занимают в эфире очень широкую полосу, им должно быть в тысячи раз «просторнее», чем сигналам обычных радиотелефонных станций. А поскольку на длинных, средних и даже коротких волнах и без того уже тесно, для телевизионных передач пригоден лишь диапазон ультракоротких волн, наиболее «вместительный» изо всех диапазонов. К тому же на нем гораздо меньше влияние помех.
Недостаток современного телевидения — малый радиус действия — объясняется характерными особенностями распространения ультракоротких волн, о которых говорилось выше. Устранение этого недостатка — одна из важнейших задач, стоящих перед радиоспециалистами[4].
РАДИО В НАРОДНОМ ХОЗЯЙСТВЕ
Трудно переоценить роль радио в любой отрасли народного хозяйства. Радиотехнические методы все глубже проникают в промышленность и транспорт, в биологию и медицину, метеорологию и математику. В кратком обзоре невозможно охватить все многообразие применений радио, но и те примеры, на которых мы остановимся, свидетельствуют об огромном значении современной радиотехники.
Еще в древности было замечено, что кусок стали при нагреве до высокой температуры и последующем быстром охлаждении становится более твердым. Такой процесс назвали закалкой.
Когда нагрев происходит в обычной печи, поверхностный слой металла прогревается скорее, чем сердцевина. Поэтому металл в различных местах расширяется по-разному, и деталь может покоробиться.
Советский ученый В. П. Вологдин предложил более совершенный метод закалки токами высокой частоты.
При такой закалке деталь помещается в мощное электромагнитное поле. Под его воздействием в металле начинают циркулировать токи высокой частоты, и деталь нагревается подобно нити в обычной электрической лампочке. При этом нагрев происходит быстро и равномерно.
Закалка токами высокой частоты в наши дни завоевала всеобщее признание.
Высокочастотный нагрев используется и в деревообрабатывающей промышленности. Здесь с помощью токов высокой частоты осуществляют быструю сушку древесины.
Чтобы высушить деревянное изделие прежними способами, требовалось довольно много времени, так как при быстром и неравномерном нагреве древесина коробилась и трескалась. Благодаря радио этот сложный и длительный процесс упростился и сократился во много раз.
Высокочастотный нагрев применяется также в медицине для лечения некоторых заболеваний и в биологии для уничтожения бактерий.