Читаем Радио?.. Это очень просто! полностью

Л. — Сейчас мы устроим в лампе ловушку для электронов. Это цилиндр, расположенный на некотором расстоянии вокруг катода (рис. 25). Зарядим его положительно относительно катода с помощью батареи.

Рис. 25.Диод.

н — нить накала; к — катод, а — анод.

Н. — Мне кажется, я знаю, что при этом произойдет. Электроны, будучи отрицательными частицами электричества, начнут притягиваться цилиндром, заряженным положительно, и в лампе установится поток электронов, идущий от катода к этому цилиндру.

Л. — Цилиндр, о котором идет речь, называется анодом, а поток электронов, идущий от катода к аноду, — анодным током.

Анодный ток проходит также через батарею и возвращается на катод. Определить присутствие анодного тока можно при помощи миллиамперметра, включенного в анодную цепь (рис. 26).

Рис. 26.Миллиамперметр позволяет измерять ток, идущий от катода к к аноду а.

Н. — Подумать только, электроны перемещаются в пустоте!.. Но скажи, если по рассеянности я включу батарею наоборот, т.е. так, что катод будет положительным, а анод — отрицательным, пойдут ли электроны тогда от анода к катоду?

Л. — Нет, конечно. Холодный анод не испускает электронов.

Н. — Значит, наша лампа является для электронов улицей с односторонним движением.

Л. — Да. В радиотехнике рассмотренная нами лампа называется двухэлектродной электронной лампой или диодом.

Н. — Я думаю, что ток в диоде очень слабый.

Л. — И ты не ошибаешься. По крайней мере в диодах, используемых в радиоприемниках. Ток в них редко бывает больше нескольких десятков миллиампер.

Н. — А от чего зависит этот ток?

Л. — Прежде всего от напряжения, приложенного между анодом и катодом: чем больше это напряжение, тем больше ток.

Н. — Это мне кажется нормальным — чем сильнее анод зовет к себе электроны, тем больше их приходит на его зов.

Л. — Однако это правило справедливо только до некоторого предела, выше которого, несмотря на увеличение напряжения на аноде, ток больше не возрастает.

Н. — Почему же?

Л. — Потому что при определенном напряжении все электроны, испускаемые катодом, достигнут анода, и тогда говорят, что ток достигает насыщения, иными словами, устанавливается максимальный ток, который может создать катод (рис. 27).

Рис. 27.Кривая, показывающая изменение анодного тока в зависимости от анодного напряжения. В точке s наступает насыщение.

НЕЗНАЙКИН ОТКРЫВАЕТ АМЕРИКУ

Н. — Очевидно, самый лучший катод в мире не может дать больше того, чем он располагает… Однако относительно устройства катодов мне пришла грандиозная идея. Мне кажется, что за нее мне могли бы выдать патент.

Л. — Каково же это сенсационное открытие?

Н. — Я думаю, что можно значительно упростить конструкцию катода, объединив в один элемент нить накала и эмитирующую поверхность. Для этого достаточно пропустить ток накала через нить, сделанную из металла, обладающего хорошими эмитирующими свойствами. При этих условиях такая нить, нагреваясь, эмитировала бы сама электроны и представляла собой очень простой катод.

Л. — Поздравляю тебя, Незнайкин. Ты только что изобрел катод прямого накала, действительно более простой, чем катод с косвенным накалом, устройство которого я тебе объяснил. Однако твое изобретение несколько опоздало, так как лампы с прямым накалом были известны задолго до ламп с косвенным накалом. Впрочем, катод с прямым накалом до настоящего времени используют в радиоприемниках, питаемых от батарей, а также в некоторых лампах сетевых радиоприемников.

Н. — Решительно, я родился слишком поздно и мне ничего не осталось изобрести.

В ЛАБИРИНТЕ СЕТОК

Л. — Наоборот. Ты можешь изобрести другие лампы, более сложные, чем диод. Но и тут уже многое было сделано увеличивая число сеток, их форму и расположение, техники создали очень интересные лампы.

Н. — А для чего служат эти знаменитые сетки?

Л. — Сетки — настоящие проволочные решетки с ячейками той или иной величины или цилиндрические спирали — помещаются на пути следования электронов между катодом и анодом. С точки зрения геометрии сетки совсем не создают препятствия движению электронов. Однако, находясь значительно ближе к катоду, сетки оказывают на поток электронов значительно большее влияние, чем анод.

Н. — Это мне не совсем ясно. О каком это влиянии ты говоришь?

Л. — О влиянии напряжения на сетке на анодный ток.

Рассмотрим наиболее простую после диода лампу с одной сеткой, т. е. лампу с тремя электродами — катодом, сеткой и анодом. Она называется триодом и является родоначальницей всех современных многосеточных ламп — восьмиэлектродных (октодов) и даже двенадцатиэлектродных (додекаодов).

Н. — Я предпочитаю, однако, чтобы ты рассказал сначала о триоде. Электроны, может быть, достаточно умны, чтобы найти дорогу среди восьми или двенадцати электродов, но я нахожу, что это чертовски сложно.

Перейти на страницу:

Все книги серии Массовая радиобиблиотека

Похожие книги

Теория струн и скрытые измерения Вселенной
Теория струн и скрытые измерения Вселенной

Революционная теория струн утверждает, что мы живем в десятимерной Вселенной, но только четыре из этих измерений доступны человеческому восприятию. Если верить современным ученым, остальные шесть измерений свернуты в удивительную структуру, известную как многообразие Калаби-Яу. Легендарный математик Шинтан Яу, один из первооткрывателей этих поразительных пространств, утверждает, что геометрия не только является основой теории струн, но и лежит в самой природе нашей Вселенной.Читая эту книгу, вы вместе с авторами повторите захватывающий путь научного открытия: от безумной идеи до завершенной теории. Вас ждет увлекательное исследование, удивительное путешествие в скрытые измерения, определяющие то, что мы называем Вселенной, как в большом, так и в малом масштабе.

Стив Надис , Шинтан Яу , Яу Шинтан

Астрономия и Космос / Научная литература / Технические науки / Образование и наука
История электротехники
История электротехники

Книга посвящена истории электротехнической науки и промышленности как в нашей стране, так и за рубежом. В ней рассмотрены все основные этапы развития электротехники, начиная с ее зарождения и до наших дней. Показана роль отечественных и зарубежных ученых, внесших наибольший вклад в развитие электротехники.Подробно и конкретно рассмотрены основные достижения различных отраслей электротехники: электроэнергетики; электромеханики; электротехнологии; электрического транспорта; светотехники; электрических материалов и кабелей; промышленной электроники и электроизмерительной техники.В главе «Персоналии» приведены краткие биографические сведения о крупнейших отечественных и зарубежных ученых и специалистах в области электротехники.

авторов Коллектив , Коллектив авторов

Технические науки / Образование и наука
Главный конструктор В.Н. Венедиктов. Жизнь, отданная танкам
Главный конструктор В.Н. Венедиктов. Жизнь, отданная танкам

В книге собраны воспоминания о главном конструкторе танкового КБ в Нижнем Тагиле В.Н. Венедиктове — автора очерка и составителя сборника Э.Б. Вавилонского, а также сорока современников главного конструктора. Это — ближайшие соратники Венедиктова по работе в УКБТМ, руководители «Уралвагонзавода», конструкторы, исследователи, испытатели бронетанковой техники, партийные и профсоюзные работники, участники художественной самодеятельности УКБТМ, люди, работавшие с ним многие годы и жившие рядом, и те, кто знал главного конструктора по отдельным встречам. Все это расширяет представление о В.Н. Венедиктове, раскрывает его личность, характер, склонности, интересы, привычки, позволяет глубже понять истоки целеустремленности главного конструктора, мотивы его поступков, помогает находить объяснение успехам в научной и инженерной деятельности. Книга рассчитана на читателей, интересующихся историей танкостроения.

Игорь Николаевич Баранов , И. Н. Баранов

Военное дело / Энциклопедии / Технические науки / Военное дело: прочее