Когда переменное напряжение приложено к катушке, создаваемый им переменный ток поддерживает переменное магнитное поле, которое в свою очередь поддерживает ток самоиндукции, постоянно противодействующий изменениям наводящего тока и поэтому препятствующий наводящему току достичь максимума, который он имел бы при отсутствии самоиндукции (следует помнить, что при увеличении наводящего тока наведенный ток имеет противоположное направление и поэтому вычитается из него). Все происходит так, как если бы к активному сопротивлению проводника катушки добавлялось другое сопротивление, вызываемое самоиндукцией. Это индуктивное сопротивление тем больше, чем выше частота тока (потому что более быстрые изменения наводящего тока создают большие токи самоиндукции) и чем больше коэффициент самоиндукции.
Коэффициент самоиндукции катушки, или индуктивность, зависит только от ее геометрических свойств: количества и диаметра витков и их расположения. Она возрастает при увеличении количества витков. Введение стального сердечника, увеличивая концентрацию магнитного поля, также значительно повышает индуктивность. Индуктивность катушки измеряется в
Если обозначить буквой L
индуктивность катушки, выраженную в генри, то для тока частотой f (в герцах) индуктивное сопротивление ХL = 2π·f·L = 6,28·f·L (здесь 6,28 — приближенное значение 2π).Рассмотрев основные свойства явлений индукции и самоиндукции, Любознайкин и Незнайкин переключились на изучение конденсаторов, способных благодаря емкости накапливать электрические заряды. Конденсатор состоит из двух проводников (образующих его обкладки), разделенных изолятором или, говоря «инженерным стилем», диэлектриком. При подключении обеих обкладок к источнику электрического тока электроны накапливаются на обкладке, соединенной с отрицательным полюсом, и покидают обкладку, соединенную с положительным полюсом. Накоплению зарядов способствует также явление отталкивания между электронами двух близко расположенных одна и другой обкладок. Если эти обкладки раздвинуть, они уже не смогут удержать па себе такие же электрические заряды.
При подключении конденсатора к источнику электрического тока устанавливается зарядный ток, сначала большой, а затем уменьшающийся по мере приближения потенциала обкладок к потенциалу источника тока. Когда эти потенциалы сравняются, ток прекратится. Общая продолжительность тока в цепи очень мала.
В зависимости от способности конденсатора накапливать большее или меньшее количество электричества говорят, что конденсатор имеет большую или меньшую емкость. Емкость измеряется в
Емкость, естественно, зависит от размеров обкладок и повышается при увеличении их площади. Она тем больше, чем меньше расстояние между обкладками; однако по этому пути нельзя идти слишком далеко, так как при очень тонком слое диэлектрика произойдет разряд (искра). Это называется
Отметим, что емкость конденсатора не зависит от рода и толщины обкладок.
Комментарии к четвертой беседе
В предыдущей беседе мы оставили конденсатор заряженным. Отключив источник электрического тока и замкнув обкладки конденсатора с помощью сопротивления, мы вызовем разряд конденсатора. Электроны, находящиеся в избытке на отрицательной обкладке, пройдя через сопротивление, восполнят недостаток электронов на противоположной обкладке. Ток разряда, большой вначале, уменьшается по мере снижения разности потенциалов между обкладками и совсем прекращается, когда потенциалы обеих обкладок выравниваются.
Можно получить непрерывную последовательность зарядов и разрядов конденсатора, подключив его к источнику переменного тока. Обкладки заряжаются, разряжаются и вновь заряжаются в соответствии с частотой переменного напряжения, и в цепи (так называют совокупность элементов, через которые проходит электрический ток) устанавливается переменный ток. Это позволяет нам говорить, что переменный ток проходит через конденсатор, хотя электроны при этом не переходят сквозь диэлектрик с одной обкладки на другую.