Читаем Радио?.. Это очень просто! полностью

Необходимо подчеркнуть совершенно второстепенную роль тока накала, единственная функция которого заключается в сообщении катоду тепла, необходимого для излучения электронов. Можно было бы использовать другие источники тепла (газовые, бензиновые и другие нагревательные приборы), но можно также использовать катоды вообще без подогрева. Так, например, в фотоэлементах, широко используемых в телевидении, катод состоит из слоя щелочного металла и излучает электроны, когда на него падает луч света. Может быть, исследование радиоактивных веществ даст нам катод с мощной эмиссией, не требующий нагрева…


Диод


Эффект электронной эмиссии, открытый Эдисоном, не имел бы, может быть, большой ценности, если бы в 1904 г. англичанину Флемингу не пришла в голову мысль расположить рядом с катодом второй электрод — анод, или металлическую пластину, имеющую по отношению к катоду положительный потенциал.

В этом случае электроны, испускаемые катодом в пространство, притягиваются катодом. Если источник постоянного напряжения все время поддерживает напряжение на аноде положительным по отношению к катоду, то устанавливается ток, получивший название анодного тока. Излученные катодом электроны проходят через вакуум лампы и достигают анода; затем по внешней цепи, в которой имеется источник напряжения, электроны возвращаются к катоду (рис. 26).

Такая лампа называется диодом. Она впервые позволила «увидеть» электрический ток в «чистом» виде, и мы констатируем, что электроны действительно идут от отрицательного полюса к положительному в отличие от условного направления, принятого для электрического тока.

Следует обратить внимание на то, что в диоде электронный поток может идти лишь в одном направлении: от катода к аноду. Если мы сделаем анод отрицательным по отношению к катоду, то весь процесс прекратится, так как электроны будут отталкиваться анодом, а последний, будучи холодным, не в состоянии излучать электроны, которые притягивались бы катодом. Таким образом, наш диод является настоящим вентилем. Легко понять, что в случае приложения к этим двум электродам переменного напряжения мы получим однонаправленный ток, проходящий в полупериод, когда анод становится положительным, и прекращающийся в течение отрицательного полупериода. Эта способность диода «выпрямлять» переменный ток, как мы увидим дальше, используется для детектирования и для питания радиоприемников от сети переменного тока.

Как и во всяком сопротивлении, анодный ток диода зависит от напряжения, приложенного между катодом и анодом, — анодного напряжения, примерно подчиняясь закону Ома. Ток повышается пропорционально напряжению, но только до некоторой определенной величины; последующее повышение напряжения не влечет за собой увеличения тока, так как все излученные катодом электроны уже участвуют в анодном токе. Как говорят в таких случаях, ток достигает насыщения. Практически явление насыщения, как оно только что было описано, характерно лишь для катодов прямого накала.


Триод


Через 2 года после изобретения диода американцу Ли де Форесту пришла в голову идея поместить между катодом и анодом третий электрод — сетку. Сетка представляет собой решетку или цилиндрическую спираль, окружающую катод. В трехэлектродной лампе или триоде сетка расположена на пути электронов, что позволяет ей регулировать поток электронов. В этом случае электрический ток зависит не только от анодного напряжения, но также и от потенциала сетки по отношению к катоду

Чем больше отрицательный потенциал сетки, тем больше тормозит она поток электронов, тем больше электронов отталкивает она обратно к катоду и тем меньшему количеству электронов, притягиваемых анодом, удается пробить себе дорогу. Если потенциал сетки достаточно отрицателен, то, несмотря на притяжение анода, она не пропустит ни одного электрона и ток будет равен нулю.

Уменьшая отрицательный потенциал сетки, мы заметим появление тока, увеличивающегося с повышением потенциала сетки (так как уменьшение отрицательного значения является повышением потенциала).

В триоде замечательно то, что влияние, оказываемое на анодный ток сеткой, значительно больше влияния, оказываемого анодом. Малого изменения потенциала сетки достаточно для создания большого изменения анодного тока.

Если мы будем поддерживать потенциал сетки постоянным и захотим добиться такого же изменения анодного тока путем изменения анодного напряжения, то нам придется изменять его в значительно больших пределах. Впрочем, это легко объясняется тем, что сетка находится ближе к катоду, чем анод. Именно на этом основана усилительная способность лампы.


Крутизна


Изменение анодного тока, вызываемое определенным изменением потенциала сетки, характеризует крутизну лампы. Крутизна выражается в миллиамперах на вольт (мa/в). Количественно крутизна показывает, на сколько миллиампер увеличивается (или уменьшается) анодный ток при увеличении (или уменьшении) потенциала сетки на 1 в. Применяемые в настоящее время лампы имеют крутизну от 1 до 15 ма/в.

Перейти на страницу:

Все книги серии Массовая радиобиблиотека

Похожие книги

Теория струн и скрытые измерения Вселенной
Теория струн и скрытые измерения Вселенной

Революционная теория струн утверждает, что мы живем в десятимерной Вселенной, но только четыре из этих измерений доступны человеческому восприятию. Если верить современным ученым, остальные шесть измерений свернуты в удивительную структуру, известную как многообразие Калаби-Яу. Легендарный математик Шинтан Яу, один из первооткрывателей этих поразительных пространств, утверждает, что геометрия не только является основой теории струн, но и лежит в самой природе нашей Вселенной.Читая эту книгу, вы вместе с авторами повторите захватывающий путь научного открытия: от безумной идеи до завершенной теории. Вас ждет увлекательное исследование, удивительное путешествие в скрытые измерения, определяющие то, что мы называем Вселенной, как в большом, так и в малом масштабе.

Стив Надис , Шинтан Яу , Яу Шинтан

Астрономия и Космос / Научная литература / Технические науки / Образование и наука
История электротехники
История электротехники

Книга посвящена истории электротехнической науки и промышленности как в нашей стране, так и за рубежом. В ней рассмотрены все основные этапы развития электротехники, начиная с ее зарождения и до наших дней. Показана роль отечественных и зарубежных ученых, внесших наибольший вклад в развитие электротехники.Подробно и конкретно рассмотрены основные достижения различных отраслей электротехники: электроэнергетики; электромеханики; электротехнологии; электрического транспорта; светотехники; электрических материалов и кабелей; промышленной электроники и электроизмерительной техники.В главе «Персоналии» приведены краткие биографические сведения о крупнейших отечественных и зарубежных ученых и специалистах в области электротехники.

авторов Коллектив , Коллектив авторов

Технические науки / Образование и наука
Главный конструктор В.Н. Венедиктов. Жизнь, отданная танкам
Главный конструктор В.Н. Венедиктов. Жизнь, отданная танкам

В книге собраны воспоминания о главном конструкторе танкового КБ в Нижнем Тагиле В.Н. Венедиктове — автора очерка и составителя сборника Э.Б. Вавилонского, а также сорока современников главного конструктора. Это — ближайшие соратники Венедиктова по работе в УКБТМ, руководители «Уралвагонзавода», конструкторы, исследователи, испытатели бронетанковой техники, партийные и профсоюзные работники, участники художественной самодеятельности УКБТМ, люди, работавшие с ним многие годы и жившие рядом, и те, кто знал главного конструктора по отдельным встречам. Все это расширяет представление о В.Н. Венедиктове, раскрывает его личность, характер, склонности, интересы, привычки, позволяет глубже понять истоки целеустремленности главного конструктора, мотивы его поступков, помогает находить объяснение успехам в научной и инженерной деятельности. Книга рассчитана на читателей, интересующихся историей танкостроения.

Игорь Николаевич Баранов , И. Н. Баранов

Военное дело / Энциклопедии / Технические науки / Военное дело: прочее