На лампы Л2
и Л3 каждое мгновение воздействуют сеточные напряжения противоположных знаков. Действительно, если во время одного из полупериодов электроны во вторичной обмотке трансформатора Тр2 перемещаются сверху вниз, то потенциал сетки лампы Л2 становится менее отрицательным, а сетки лампы Л3 — более отрицательным. При следующем полупериоде распределение потенциалов как раз противоположно. Таким образом, когда анодный ток лампы Л2 повышается, анодный ток лампы Л3 понижается и наоборот. Обе лампы работают в противоположной полярности в два такта, чем и объясняется происхождение названия «двухтактный».Для использования переменных анодных токов противоположных полярностей установлен второй трансформатор (Тр2
) с выводом от средней точки на первичной обмотке. Таким образом, ток каждой лампы проходит лишь по половине первичной обмотки. Оба тока проходят по обмотке в противоположных направлениях, но сами токи имеют противоположную полярность, поэтому действие токов в конечном счете складывается, так как их магнитные поля имеют одинаковое направление. Таким образом, обе переменные составляющие совместно индуктируют во вторичной обмотке ток, воздействующий на громкоговоритель Гр.Если переменные составляющие анодного тока обеих ламп действуют согласованно, то постоянные составляющие, имеющие одинаковую величину, но протекающие по половинам первичной обмотки в разных направлениях, создают противоположно направленные магнитные поля, которые взаимно уничтожаются.
В этом заключается одно из преимуществ двухтактной схемы. Благодаря отсутствию постоянного магнитного поля сердечник трансформатора работает в наилучших условиях, так как его намагничивание определяется лишь переменными составляющими. Магнитная проводимость сердечника, снижающаяся при увеличении подмагничивающего поля, оказывается значительно выше, чем при наличии постоянного поля, создаваемого постоянной составляющей.
К этому преимуществу следует добавить еще и другие. Так, например, благодаря работе обеих ламп в противоположной полярности компенсируются некоторые искажения, обусловленные кривизной их характеристик (нелинейные искажения).
Комментарии к двенадцатой беседе
В двухтактной схеме можно выбрать рабочую точку на нижнем изгибе характеристики. Для этого на сетку лампы достаточно подать смещение, значительно более высокое, чем в рассмотренных нами ранее режимах работы усилительных ламп. В таком режиме только положительные полупериоды сеточного напряжения создадут заметные изменения анодного тока. Таким образом, обе лампы будут работать поочередна. Но в выходном трансформаторе колебание будет полностью восстановлено, потому что полупериоды будут следовать в нем каждый в должном направлении.
При таком методе работы, носящем название режима В
, на сетки можно подавать переменные напряжения с амплитудой, значительно большей (примерно вдвое), чем в режиме А, т. е. при обычном режиме усиления, когда рабочая точка должна находиться в середине линейного участка характеристики.В двухтактной схеме, работающей в режиме В
, лампы используются более полно и можно получить более высокую мощность, чем в режиме А.Само собой разумеется, что в качестве рабочей точки в двухтактной схеме может быть выбрана любая, промежуточная между точками, соответствующими режимам А
и В. В этом случае говорят, что лампы работают в режиме A1 или режиме АВ (рис. 143).Рис. 143.
Для сведения упомянем о работе в режиме С
, когда рабочая точка находится левее нижнего изгиба характеристики, т. е. когда только вершины положительных полупериодов могут вызвать анодный ток. Такой режим используется в некоторых передатчиках и измерительных приборах.Принцип этой связи весьма прост: между анодной цепью первой и сеточной цепью второй ламп включается переходный конденсатор. Как мы знаем, анодный ток создает на нагрузочном сопротивлении падение напряжения, в котором содержится переменная составляющая. Переменное напряжение подается на сетку следующей лампы через конденсатор с правильно подобранной емкостью. Сюда же подается необходимое напряжение смещения, определяющее положение рабочей точки. Смещение подается с помощью сеточного резистора, подключенного к отрицательному полюсу источника высокого напряжения (рис. 56).
Емкость конденсатора связи, установленного между анодом одной и сеткой следующей лампы, должна быть достаточной для беспрепятственной передачи переменного напряжения. В каскадах высокой частоты достаточно иметь емкость 500 пф, а в каскадах низкой частоты необходимо ставить конденсаторы порядка 10 000 пф (0,01 мкф).
Сеточный резистор имеет сопротивление порядка сотен тысяч ом; одной из наиболее часто применяемых величин является 0,5 Moм.