Читаем Радио?.. Это очень просто! полностью

Для создания напряжения на экранирующей сетке применяют схему делителя напряжения, включая два последовательно соединенных резистора (R2 и R3 на рис. 72) между полюсами источника высокого напряжения. В зависимости от сопротивлений этих резисторов через них протекает больший или меньший ток, создающий на каждом из них падение напряжения, пропорциональное сопротивлениям резисторов (сумма этих двух падений напряжения, разумеется, равна напряжению источника). Таким образом, общая для обоих резисторов точка имеет промежуточное напряжение, которому путем соответствующего подбора сопротивлении резисторов можно придать любое значение. К этой общей точке и подключается экранирующая сетка.

В связи с тем, что сетка захватывает некоторое количество проходящих через нее электронов, существует небольшой ток экранирующей сетки. Чтобы его изменения не нарушали постоянства напряжения на экранирующей сетке, между нею и катодом включается конденсатор, который отводит переменную составляющую тока прямо на катод.

В лампах, у которых ток экранирующей сетки имеет постоянную величину, можно создать требуемое напряжение с помощью гасящего сопротивления (резистор R2 на рис. 148), соединяющего экранирующую сетку с положительным полюсом высокого напряжения. Но и в этом случае необходим конденсатор, предназначенный для отведения на катод переменной составляющей тока.



Рис. 148.Потенциал экранирующей сетки определяется падением напряжения на сопротивлении R2. Переменная составляющая замыкается на катод через конденсатор С2.


Вторичная эмиссия


Когда в конце быстрого пролета электроны достигают анода, в результате удара из атомов анода выбиваются электроны, выбрасываемые в пространство. Поток электронов, излучаемых анодом под воздействием электронной бомбардировки, носит название вторичной эмиссии. Скорость вторичных электронов относительно невелика и после короткого полета они обычно возвращаются на анод вследствие притяжения положительным потенциалом. По крайней мере так происходит в триоде.

В тетроде вторичная эмиссия может серьезно нарушить работу лампы. Когда потенциал анода падает ниже потенциала экранирующей сетки, электроны не возвращаются на анод, а притягиваются экранирующей сеткой. При этом возникает ток от анода к экранирующей сетке. Этот ток имеет направление, противоположное нормальному направлению анодного тока, и поэтому вычитается из него. Миллиамперметр, включенный в анодную цепь, покажет ток, равный разности нормального анодного и вторичного токов.

В каких условиях подобное явление может иметь место? Иными словами, каким образом анодное напряжение может оказаться меньшим напряжения на экранирующей сетке? Напомним, что напряжение на экранирующей сетке имеет постоянную величину. Напряжение же на аноде все время изменяется, потому что из напряжения источника анодного тока вычитается падение напряжения на сопротивлении нагрузки, находящемся в анодной цепи. Если переменное напряжение на сетке превысит некоторое значение, то амплитуда переменной составляющей анодного тока может стать такой, что мгновенное значение напряжения на аноде окажется ниже напряжения на экранирующей сетке. Именно в этот момент вторичная эмиссия с анода устремляется на экранирующую сетку.


Пентод


Способ устранения этого недостатка прост: между экранирующей сеткой и анодом помещают сетку, имеющую потенциал катода. Эта защитная сетка не оказывает никакого влияния на первичные электроны, быстро летящие от катода к аноду. Но значительно более медленные вторичные электроны тормозятся ею и «благоразумно» возвращаются на анод.

Полученная таким образом трехсеточная лампа, с пятью электродами, или пентод, свободна от недостатков, вызываемых вторичной эмиссией. Кроме этой особенности, пентод имеет те же свойства и достоинства, что и тетрод.

В настоящее время пентод является наиболее широко используемой лампой в усилителях как высокой, так и низкой частоты. В обоих случаях он позволяет получить большое усиление. Кроме того, емкость сетка — анод пентода крайне незначительна, что является особенно важным преимуществом при работе в каскадах высокой частоты, так как это уменьшает опасность самовозбуждения.

Комментарии к четырнадцатой беседе

Связь через общие сопротивления


Экранирование позволяет устранить или уменьшить паразитные связи, вывиваемые магнитной индукцией или емкостью. Тем не менее остаются другие связи, которые могут возникать из-за сопротивлений, являющихся общими для нескольких цепей.

Когда через одно и то же сопротивление (хотя бы источник высокого напряжения) протекают переменные токи нескольких ламп, каждый ток создает на нем переменное падение напряжения, которое будет влиять на напряжения всех электродов ламп. В зависимости от знака таких связей они также могут вызвать либо самовозбуждение, либо значительное уменьшение усиления.

Перейти на страницу:

Все книги серии Массовая радиобиблиотека

Похожие книги

Теория струн и скрытые измерения Вселенной
Теория струн и скрытые измерения Вселенной

Революционная теория струн утверждает, что мы живем в десятимерной Вселенной, но только четыре из этих измерений доступны человеческому восприятию. Если верить современным ученым, остальные шесть измерений свернуты в удивительную структуру, известную как многообразие Калаби-Яу. Легендарный математик Шинтан Яу, один из первооткрывателей этих поразительных пространств, утверждает, что геометрия не только является основой теории струн, но и лежит в самой природе нашей Вселенной.Читая эту книгу, вы вместе с авторами повторите захватывающий путь научного открытия: от безумной идеи до завершенной теории. Вас ждет увлекательное исследование, удивительное путешествие в скрытые измерения, определяющие то, что мы называем Вселенной, как в большом, так и в малом масштабе.

Стив Надис , Шинтан Яу , Яу Шинтан

Астрономия и Космос / Научная литература / Технические науки / Образование и наука
История электротехники
История электротехники

Книга посвящена истории электротехнической науки и промышленности как в нашей стране, так и за рубежом. В ней рассмотрены все основные этапы развития электротехники, начиная с ее зарождения и до наших дней. Показана роль отечественных и зарубежных ученых, внесших наибольший вклад в развитие электротехники.Подробно и конкретно рассмотрены основные достижения различных отраслей электротехники: электроэнергетики; электромеханики; электротехнологии; электрического транспорта; светотехники; электрических материалов и кабелей; промышленной электроники и электроизмерительной техники.В главе «Персоналии» приведены краткие биографические сведения о крупнейших отечественных и зарубежных ученых и специалистах в области электротехники.

авторов Коллектив , Коллектив авторов

Технические науки / Образование и наука
Главный конструктор В.Н. Венедиктов. Жизнь, отданная танкам
Главный конструктор В.Н. Венедиктов. Жизнь, отданная танкам

В книге собраны воспоминания о главном конструкторе танкового КБ в Нижнем Тагиле В.Н. Венедиктове — автора очерка и составителя сборника Э.Б. Вавилонского, а также сорока современников главного конструктора. Это — ближайшие соратники Венедиктова по работе в УКБТМ, руководители «Уралвагонзавода», конструкторы, исследователи, испытатели бронетанковой техники, партийные и профсоюзные работники, участники художественной самодеятельности УКБТМ, люди, работавшие с ним многие годы и жившие рядом, и те, кто знал главного конструктора по отдельным встречам. Все это расширяет представление о В.Н. Венедиктове, раскрывает его личность, характер, склонности, интересы, привычки, позволяет глубже понять истоки целеустремленности главного конструктора, мотивы его поступков, помогает находить объяснение успехам в научной и инженерной деятельности. Книга рассчитана на читателей, интересующихся историей танкостроения.

Игорь Николаевич Баранов , И. Н. Баранов

Военное дело / Энциклопедии / Технические науки / Военное дело: прочее