Читаем Радио и телевидение?.. Это очень просто! полностью

Л. — Зарядный ток, который ты так хорошо описал, останавливается, как только конденсатор зарядится. Вначале этот ток имеет большую величину. Но по мере нарастания заряда движение электронов затрудняется, так как обосновавшиеся на отрицательной обкладке электроны отталкивают те, которые хотят туда проникнуть. А электронов, покидающих положительную обкладку, становится все меньше.

Н. — А что произойдет, если после того, как конденсатор полностью зарядится, мы отключим батарею?

Л. — Очень просто, заряд останется на обкладках. При желании ты можешь разрядить конденсатор, подключив к его обкладкам резистор или простой проводник (рис. 25). Тогда избыточные электроны с одной из обкладок перейдут на другую; это движение электронов будет продолжаться до тех пор, пока не установится равновесие.



Рис. 25.Конденсатор, разряжающийся через резистор.


Н. — У меня возникает вопрос, нельзя ли сравнить конденсатор с двумя резервуарами, разделенными эластичной резиновой мембраной? Если насос повышает давление воздуха в одном из резервуаров и снижает в другом, то это соответствует заряду конденсатора. Насос останавливается, когда разница давлений достигает некоторого предела, который зависит от размера резервуаров и эластичности мембраны. Теперь наш конденсатор заряжен. Насколько обоснованно такое мое сравнение?


Л. — В основных чертах оно правильное. Но имеется одно различие. В каждом из твоих резервуаров давление во всех точках одинаковое. А на обкладках конденсатора заряды расположены неравномерно. На той стороне обкладки, которая смотрит на другую обкладку, самая высокая плотность электронов, а на противоположной стороне — самая низкая (рис. 26). Ведь в электричестве учитывается не только «давление», создаваемое источником напряжения, но и притяжение зарядов противоположной полярности. Тогда как в твоих резервуарах играет роль только одна сила — давление, создаваемое насосом.



Рис. 26.Распределение зарядов на обкладках конденсатора.


Величина емкости


Н. — А что же определяет емкость конденсатора? Это уже не изолированный проводник, обладающий очень малой емкостью. Здесь притяжение между обкладками, несомненно, обеспечивает значительный прирост зарядов, которые эти обкладки способны удержать.

Л. — Справедливо. Теперь тебе легче понять, что емкость тем больше, чем обширней поверхность обкладок, расположенных одна против другой. Учитывая эффект притяжения, ты также поймешь, что чем ближе сведены обкладки, тем больше емкость конденсатора.

Н. — Так, значит, емкость пропорциональна площади обкладок, расположенных одна напротив другой, и обратно пропорциональна расстоянию между ними. Здесь мы еще раз видим чисто геометрическое отношение.

Л. — Не совсем так, Незнайкин. Имеется еще третий участвующий в игре фактор. И твое сравнение с резервуарами поможет легко его понять. В примере с резервуарами наряду с объемом резервуаров и толщиной мембраны имела значение и эластичность материала, из которого она сделана.

В конденсаторах на емкость влияет такой фактор, как материал диэлектрика, разделяющего обкладки. Если в качестве диэлектрика используется воздух, то его диэлектрическая постоянная, т. е. фактор, учитываемый при расчетах, равна 1. Но если пространство между обкладками заполнено не воздухом, а слюдой, емкость увеличивается в 8 раз, так как диэлектрическая постоянная слюды равна 8.

Н. — А какова роль толщины обкладок? В какой мере она влияет на емкость?

Л. — Толщина не оказывает никакого влияния, ибо заряды накапливаются на наиболее сближенных слоях обкладок. Впрочем, вот формула, позволяющая вычислить емкость:


где С — емкость, Ф; εв — абсолютная диэлектрическая проницаемость изоляции, равная произведению относительной диэлектрической проницаемости ε на электрическую постоянную, ε = 8,855·10-12 Ф/м; S — площадь поверхности пластин, м2; d — расстояние между пластинами, м.



Н. — Глядя на эту формулу, я убедился, что емкость конденсатора можно без труда увеличивать сколько пожелаешь. Для этого достаточно сблизить его обкладки. По мере уменьшения d возрастает емкость С. При бесконечно малом d емкость становится бесконечно большой.

Л. — Да, но эти «бесконечно» невозможны.

Н. — Почему? Разве с точки зрения математики мои рассуждения ошибочны?

Л. — Математически все верно. Но вернемся к нашему сравнению с резервуарами: если ты станешь снижать толщину мембраны, то наступит момент, когда под давлением нагнетаемого насосом воздуха она разорвется. А в конденсаторе, если ты сведешь слишком близко его обкладки, между ними станут проскакивать искры. Взаимное притяжение отрицательного и положительного зарядов позволит электронам пересекать разделяющее обкладки пространство, заполненное воздухом или любым другим диэлектриком.

Перейти на страницу:

Все книги серии Массовая радиобиблиотека

Похожие книги

PIC-микроконтроллеры. Все, что вам необходимо знать
PIC-микроконтроллеры. Все, что вам необходимо знать

Данная книга представляет собой исчерпывающее руководство по микроконтроллерам семейства PIC компании Microchip, являющегося промышленным стандартом в области встраиваемых цифровых устройств. В книге подробно описывается архитектура и система команд 8-битных микроконтроллеров PIC, на конкретных примерах изучается работа их периферийных модулей.В первой части излагаются основы цифровой схемотехники, математической логики и архитектуры вычислительных систем. Вторая часть посвящена различным аспектам программирования PIC-микроконтроллеров среднего уровня: описывается набор команд, рассматривается написание программ на ассемблере и языке высокого уровня (Си), а также поддержка подпрограмм и прерываний. В третьей части изучаются аппаратные аспекты взаимодействия микроконтроллера с окружающим миром и обработки прерываний. Рассматриваются такие вопросы, как параллельный и последовательный ввод/вывод данных, временные соотношения, обработка аналоговых сигналов и использование EEPROM. В заключение приводится пример разработки реального устройства. На этом примере также демонстрируются простейшие методики отладки и тестирования, применяемые при разработке реальных устройств.Книга рассчитана на самый широкий круг читателей — от любителей до инженеров, при этом для понимания содержащегося в ней материала вовсе не требуется каких-то специальных знаний в области программирования, электроники или цифровой схемотехники. Эта книга будет также полезна студентам, обучающимся по специальностям «Радиоэлектроника» и «Вычислительная техника», которые смогут использовать ее в качестве учебного пособия при прослушивании соответствующих курсов или выполнении курсовых проектов.

Сид Катцен

Радиоэлектроника
Электроника для начинающих
Электроника для начинающих

В ходе практических экспериментов рассмотрены основы электроники и показано, как проектировать, отлаживать и изготавливать электронные устройства в домашних условиях. Материал излагается последовательно от простого к сложному, начиная с простых опытов с электрическим током и заканчивая созданием сложных устройств с использованием транзисторов и микроконтроллеров. Описаны основные законы электроники, а также принципы функционирования различных электронных компонентов. Показано, как изготовить охранную сигнализацию для защиты от проникновения в дом, елочные огни, электронные украшения для одежды, устройство преобразования звука, кодовый замок, автономную роботизированную тележку и др. Приведены пошаговые инструкции и более 500 наглядных рисунков и фотографий.Для начинающих радиолюбителей

Паоло Аливерти , Чарльз Платт

Радиоэлектроника / Технические науки
Искусство схемотехники. Том 3 (Изд.4-е)
Искусство схемотехники. Том 3 (Изд.4-е)

Широко известная читателю по предыдущим изданиям монография известных американских специалистов посвящена быстро развивающимся областям электроники. В ней приведены наиболее интересные технические решения, а также анализируются ошибки разработчиков аппаратуры: внимание читателя сосредотачивается на тонких аспектах проектирования и применения электронных схем. На русском языке издается в трех томах. Том 3 содержит сведения о микропроцессорах, радиотехнических схемах, методах измерения и обработки сигналов, принципах конструирования аппаратуры и проектирования маломощных устройств, а также обширные приложения. Для специалистов в области электроники, автоматики, вычислительной техники, а также студентов соответствующих специальностей вузов и техникумов.

Пауль Хоровиц , Уинфилд Хилл

Техника / Радиоэлектроника