Читаем Радиоэлектроника-с компьютером и паяльником полностью

Рис. 15.Оптоэлектронные компоненты (внешний вид, УГО и компоненты EWB):

а, б — фото- и светодиоды; в, г — цифровые индикаторы


Основными параметрами фотодиодов являются: темновой ток, рабочее напряжение и чувствительность по отношению к световому потоку.

Фотодиод может работать в двух режимах как фоторезистор и в генераторном режиме, когда внешний источник отсутствует и с его зажимов снимается фото-ЭДС.


Фототранзисторы

Фототранзисторы устроены аналогично обычным транзисторам, но, как и в фотодиоде, в их корпусе имеется светопрозрачное окошко, через которое свет попадает на базу прибора. Благодаря этому в базе генерируются дополнительные носители заряда, что эквивалентно подаваемому на нее сигналу управления.

Фототранзистор может и не иметь электрического вывода от базы (диодное включение). По сравнению с фотодиодами фототранзисторы имеют большие выходные токи из-за своих усилительных свойств, хотя их инерция немного больше.

Основными параметрами фототранзисторов служат: рабочее напряжение и темновой ток при этом напряжении; наибольший ток при освещении прибора и его интегральная чувствительность.

Фототранзисторы выполняют также на основе так называемых однопереходных транзисторов (или двухбазовых диодов).


Фототиристоры

В фототиристоре, как и в обычном тиристоре, используется четырехслойная полупроводниковая структура р-n-р-n; конструктивно он выполняется так, чтобы свет попадал на высокоомную n-базовую область. Таким образом, световой импульс играет роль импульса управляющего тока, отпирающего тиристор. Так же, как и обычный тиристор, он остается включенным после действия импульса и для его выключения надо выключить приложенное к нему внешнее напряжение.


Светоизлучающие диоды

Светоизлучающий диод или сокращенно светодиод представляет собой полупроводниковый диод, преобразующий электрические сигналы в световые. Работа светодиодов основана на физическом явлении, называемом электролюминесценцией. Возбуждение полупроводниковой структуры сопровождается рекомбинацией электронов и дырок с последующим излучением квантов света. Для получения требуемого цвета свечения используются специально подобранные многокомпозитные полупроводники. В результате использования карбида кремния получают красно-оранжевый цвет свечения, антимонида галлия — желтый, а теллурида цинка — зеленый.

Чаще всего светодиоды выпускают в круглых пластмассовых корпусах диаметром 3 или 5 мм (рис. 15, а, б). Для вывода света базовая область светодиода выполняется в виде полусферической линзы (либо имеет аналогичное покрытие).

Светодиоды широко используются в качестве индикаторов общего применения, заменяя лампы накаливания, так как имеют меньшие габариты и меньшее энергопотребление.

Прямые токи светодиодов составляют 5…22 мА, а прямое напряжение около 2…6 В. Максимальное обратное напряжение у отдельных типов светодиодов составляет 5 В.

Комбинируя светодиоды, создают специальные знаковые индикаторы. Примером может служить одноразрядный семисегментный индикатор, позволяющий за счет внешней коммутации сегментов высвечивать цифры от 0 до 9 (рис. 15, г).

Светодиоды могут иметь несколько р-n переходов на одном кристалле — матричные светодиоды. Из подобных структур создают многоразрядные знакосинтезирующие индикаторы (рис 15, в).

Светодиоды имеют низкое напряжение питания, малый ток и высокое быстродействие.

Арсенид-галлиевые светодиоды излучают свет в инфракрасном диапазоне (ИК). Это ИК-диоды. Максимум их излучения лежит в диапазоне 0,87…0,96 мкм, излучаемая мощность 10…500 мВт, максимальный ток 100…2500 мА.


Полупроводниковые лазеры

В отличие от простых светодиодов, дающих некогерентное излучение, в специальных инжекционных лазерах генерируется когерентное излучение света. Помимо определенного выбора активной среды инжекционного лазера, представляющего собой в электрической цепи диод, в нем на основе р-n перехода выполняется еще и специальная резонансная оптическая система. Эта система и вносит основные ограничения на размеры устройства: площадь поперечного сечения р-n перехода — 0,5…2 мкм2, длина излучающей области — 300…500 мкм. Излучение имеет форму иглы с пространственным расхождением луча, составляющим несколько угловых минут.

Полупроводниковый лазер может работать как в непрерывном, так и в импульсном режиме.


Оптроны

Оптроны, или оптопары, состоят из двух рассмотренных выше оптоэлектронных приборов, связанных общим световым каналом так, что один из них является излучателем света, а другой — его приемником. Таким образом, оптрон представляет собой электрический многополюсник, в котором передача сигнала от входа к выходу осуществляется за счет преобразования входного электрического сигнала в световой сигнал, его передаче внутри устройства и последующего преобразования в электрический выходной сигнал.

Перейти на страницу:
Нет соединения с сервером, попробуйте зайти чуть позже