Первый шаг в этом направлении сделал М. Фарадей, описавший в 1821 г. опыты по вращению проводника в магнитном поле, а один из промежуточных, но результативных — Б. С. Якоби. В 1838 г. по реке Неве двигался бот с 12 пассажирами, приводимый в движение «магнитным двигателем» Якоби. Работа двигателя постоянного тока основана на взаимодействии проводников с током, располагаемых на якоре (вращающаяся часть двигателя) и магнитного поля, создаваемого обмоткой возбуждения, находящейся на магнитных сердечниках (полюсах) статора (рис. 24).
Рис. 24.
Поле возбуждения может также создаваться не обмоткой, а постоянными магнитами. Это взаимодействие приводит к появлению сил Ампера, создающих электромагнитный вращающий момент.
Подключение обмотки якоря к внешней цепи осуществляется через специальный щеточно-коллекторный узел. В последнее время появились бесколлекторные двигатели постоянного тока, имеющие датчики положения якоря и специальный полупроводниковый коммутатор.
В зависимости от способа соединения цепи якоря и обмотки возбуждения различают двигатели: независимого возбуждения, в которых обмотки питаются от разных источников (частный случай — возбуждение от постоянных магнитов); параллельного, последовательного и смешанного возбуждения. Вид механической характеристики (зависимости частоты вращения вала от нагрузки на нем) зависит от типа возбуждения.
В паспортных данных двигателей обычно указывают: напряжение питания, В; мощность (механическая мощность на валу) Вт или кВт; частоту вращения, об/мин; потребляемый ток, А. Реже можно встретить крутящий момент, момент инерции и другие характеристики.
Важной особенностью двигателей постоянного тока является простота регулирования частоты вращения с помощью реостатов, включаемых в цепь возбуждения или якоря, а также тиристорных преобразователей. При этом надо не забывать, что одновременно будет изменяться и момент (мощность) на валу двигателя.
В электродвигателях переменного тока неподвижная обмотка статора так распределена в пазах его внутренней поверхности, что при определенных способах питания ее переменным током, создаваемое ею магнитное поле вращается вокруг оси системы. Наиболее просто вращающееся поле получается в двух случаях.
В двухфазной системе (рис. 25) две обмотки (фазы) статора размещаются взаимно перпендикулярно (пространственный сдвиг) и питаются переменными синусоидальными напряжениями сдвинутыми по фазе также на 90° (временной сдвиг).
Рис. 25
.Таким образом, поле одной обмотки относительно ее оси (перпендикулярной оси двигателя) колеблется по синусоидальному закону, а второй — по косинусоидальному. Сложение этих взаимно перпендикулярных колебаний приводит к появлению суммарного магнитного поля, вращающегося вокруг оси статора. Смещение фазы напряжения второй обмотки на 90° в большинстве случаев получают за счет питания этой обмотки через конденсатор.
Принцип двухфазного двигателя был предложен итальянским ученым Г. Феррарисом и американским ученым и инженером, сербом по национальности, Н. Тесла практически одновременно во второй половине XIX в.
Еще более поразительным по своей оригинальности и простоте является второй вариант, предложенный в 1888 г. русским инженером-электриком, работавшим в германской компании АЭГ, М. О. Доливо-Добровольским. В его конструкции на статоре под углом 120° друг к другу размещались три фазные обмотки, питаемые от трехфазной сети переменного тока (напряжения отдельных фаз в этой сети имеют временной сдвиг, равный 1/3 периода). В результате образовывалось вращающееся магнитное поле.
В асинхронных двигателях это поле, пересекая проводники обмотки ротора, индуцирует в них ЭДС, которая создает ток в этих проводниках, если они замкнуты, например, как в короткозамкнутом роторе (по типу беличьей клетки, также предложенной М. О. Доливо-Добровольским). Взаимодействие вращающегося магнитного поля статора и проводников с токами в роторе приводит к появлению сил Ампера и вращающего момента. Ротор вращается вслед за полем статора, но с некоторым скольжением, т. е. асинхронно.