Позже игру усовершенствовали. Плитки были разных цветов. Я должен был положить одну белую, две синие, одну белую, две синие, и еще белую, и опять две синие — я мог бы положить другую синюю, но должна была быть белая. Вы уже поняли обычный коварный замысел: сначала создать удовольствие от игры, а затем медленно добавлять материал образовательного характера!
Моя мать, женщина значительно более чувствительная, начинала осознавать его коварство и говорила: «Мел, позволь бедному ребенку поставить синюю плитку, если ему так хочется». И отец отвечал: «Нет, я хочу, чтобы он обращал внимание на чередование цвета в узоре. Это единственное, что я могу сделать, — это математика на раннем уровне». И я тут же начинал ныть: «Что такое математика?» Я уже вам ответил. Математика распознает узоры. (Очевидно, что обучение оказывает некоторое влияние. Когда я ходил в детский сад, мы провели прямой экспериментальный тест. В те дни мы занимались плетением. Поделки мы брали с собой домой — это слишком трудное занятие для ребятишек. Обычно мы сплетали цветные листы бумаги, используя вертикальные полоски, и получали узор. Воспитательница детского сада так удивилась моим поделкам, что написала специальное письмо мне домой, сообщив, что этот ребенок совершенно необычен, поскольку он, кажется, заранее вычисляет, какой рисунок получит, и делает на редкость сложные узоры. Игра с плитками принесла свои плоды.)
Я хотел бы привести и другие доказательства, что математика — это всего лишь узоры. Во время своего пребывания в Корнелле я был заворожен студенческим сообществом. Мне казалось, что оно состоит из горстки здравомыслящих людей и огромной массы туповатых студентов, изучающих домоводство и другую подобную ерунду, а также большого количества девушек. Я часто сидел со студентами в кафетерии и прислушивался к разговорам, пытаясь уловить хоть одно умное слово. Можете вообразить мое удивление, когда я открыл, как мне казалось, потрясающую вещь.
Я услышал разговор двух девушек, одна объясняла другой, как провести прямую линию — вы откладываете справа некоторое число для каждого ряда и движетесь по восходящей, когда вы откладываете одно и то же значение, вы получаете прямую линию. Глубокий принцип аналитической геометрии! Разговор продолжался. Я был изумлен. Я не представлял, что женский ум способен вместить аналитическую геометрию.
Девушка продолжала: «Предположим, у тебя есть другая линия, идущая с другой стороны, и ты хочешь вычислить, где они пересекаются». Допустим, на одной линии ты отложишь направо два в каждом ряду по восходящей, а на другой линии отложишь направо три в каждом ряду по восходящей — и они продвинутся на двадцать шагов в сторону и так далее — я был поражен. Она вычислила, где линии пересекаются! Правда, выяснилось, что эта девушка объясняла другой, как вязать носок с узором.
Поэтому я усвоил урок: женский ум способен воспринимать аналитическую геометрию. Те, кто годами настаивает (перед лицом очевидных доказательств обратного характера), что мужчина и женщина равноправны и способны к рациональному мышлению, могут здесь кое-что почерпнуть. Трудность может заключаться в том, что мы пока не открыли пути взаимодействия с женским умом. Если это правильно сделать, может быть, мы извлечем что-нибудь стоящее.
Теперь я продолжу обсуждать мой ранний опыт общения с математикой.
Отец рассказал мне и о другом — я не могу этого четко объяснить, поскольку здесь скорее уровень эмоций, а не разговора, — он сказал, что отношение длины окружности к диаметру круга всегда одинаковое, независимо от размера. Мне не показалось это слишком уж невероятным, но такое отношение обладало чудесным свойством. Это было удивительное число, таинственное число пи[26]. С этим числом связана тайна, которую я не совсем понимал в раннем возрасте, но это было великое число, в результате я сталкивался с ним повсюду.
Позже, в школе, нас учили превращать простые дроби в десятичные. Однажды, когда я преобразовывал 31/8 в 3,125, я увидел, как мой товарищ пишет, что это равно числу π — отношению длины окружности к диаметру. Учитель поправил, что π равно 3,1416.