Тогда мы получили результаты экспериментов Лэмба[29] и Резерфорда[30] по сдвигам энергии электрона в атоме водорода. До тех пор грубые предсказания были достаточно хороши, но теперь появилось совершенно точное число: 1060 Мегагерц и ничего, кроме этого. И все сказали: проклятие, эта проблема должна быть решена! Известна теория, известны проблемы, но теперь появилась очень точная цифра.
Ганс Бете взял эту цифру и выполнил некоторые оценки, как избежать бесконечностей, вычитая эффект Лэмба из того эффекта с бесконечностями, и тут величины, которые имели тенденцию стремиться к бесконечности, вдруг перестали расти; возможно, они остановились в этом порядке по величине сдвига — он получил что-то около 1000 Мегагерц.
Я вспоминаю, как он пригласил кучу людей к себе на вечеринку в Корнелле, но его вызвали на какую-то консультацию. Он позвонил мне во время вечеринки и сообщил, что продолжит вычисления в поезде. Когда он вернулся, он прочитал лекцию по этой проблеме и показал, как процедура обрезания интегралов позволяет избежать бесконечностей, но слишком уж все было подогнано для этой цели и запутано. Бете сказал: «Хорошо бы кто-нибудь показал, как все это можно привести в порядок». Я подошел к нему после лекции и заявил: «О, это легко. Я могу это сделать». Я начал интересоваться этими идеями еще на последнем курсе Массачусетского технологического института. Я даже состряпал тогда ответ — неверный, конечно. Именно тогда Швингер, Томонага и я принялись за разработку способа, как технически включить эту процедуру в последовательный анализ, сохранив на всех этапах релятивистскую инвариантность. Томонага уже предложил, как это сделать, и тогда же Швингер разработал свой собственный путь.
А я пришел к Бете со своим способом. Было смешно — я не знал, как выполнять простейшие практические задачи в этой области — я об этом когда-то читал, но был занят своей собственной теорией, так что я не мог проверить правильность своих идей. Мы вместе проделали выкладки на доске — все оказалось неправильным. Даже хуже, чем раньше. Я вернулся домой, думал-думал и решил, что должен научиться решать примеры. И научился. После этого я вернулся к Бете, и мы попытались еще раз — и мой способ заработал! Мы так никогда и не поняли, что было неправильным в первый раз… какая-то проклятая ошибка.
Журналист: Насколько это вас задержало?
Фейнман: Ненадолго, может быть, на месяц. Это пошло мне на пользу, поскольку я просмотрел, что сделал, и согласовал сам с собой, что следует сделать, и убедился, что диаграммы, которые я придумал для правильного объяснения процессов, действительно работают.
Журналист: Понимали ли вы тогда, что их назовут «фейнмановскими диаграммами», что они войдут в учебники?
Фейнман: Конечно, нет. Мне вспоминается один момент. Я был в пижаме, работал, сидя на полу, вокруг меня были разбросаны бумаги — смешные диаграммы с шариками-кляксами и торчащими линиями. Я сказал сам себе: «Будет забавно, если эти диаграммы окажутся полезными и все начнут ими пользоваться, a «Physical Review» напечатает эти глупые рисунки. Конечно, я не мог предвидеть — во-первых, я не представлял себе, как много этих рисунков будет появляться в «Physical Review», и, во-вторых, что, когда ими будут пользоваться, они не будут выглядеть смешно.
Фейнман: Ну вот! Видите, вы должны знать жизнь. Физики об этом знают.
Журналист: Разобрать на части, а потом собрать все обратно?
Фейнман: Правильно. Всегда есть какая-то грязь, или бесконечность, или еще что-нибудь.
Журналист: Давайте продолжим интервью. В своих лекциях вы рассказываете, что физические теории хорошо работают при объединении различных классов явлений, можно демонстрировать рентгеновские лучи, мезоны или что-то еще. «Всегда существует много нитей, подвешенных во всех направлениях». Какие утерянные нити вы видите в физике сегодня?
Фейнман: Участии существуют массы; калибровочные теории дают прекрасные образцы взаимодействия, но не для частиц с массами; необходимо понять эти нестандартные наборы массовых чисел. В сильных, ядерных взаимодействиях мы имеем теорию цветных[31] кварков и глюонов, очень точную и полностью определенную, но с очень малым количеством трудных для понимания предсказаний. Технически очень непросто получить четкую проверку теории — это сложная проблема. Я должен с сожалением констатировать, что здесь потеряна нить. Пока нет доказательств противоречивости теории, но нет и значительного прогресса, пока мы не проверим все предсказания с жесткими количественными результатами.