Читаем Ранняя классика полностью

Между прочим, геометрический принцип античного атомизма весьма соответствует современным представлениям об атоме. Современное представление об атоме, включая даже вопрос о взаимодействии атомов, основано на определенного рода геометрических конструкциях95. Характеризуя современную атомистику, знаменитый современный физик Шредингер в статье "2400 лет квантовой теории" пишет: "Только теперь геометрическими прообразами являются не фигуры материальных частиц, как в античной атомистике, а скорее геометрические свойства самого пространства - времени - континуума. Эта параллель не только игра словами. Ибо можно напомнить, что в самой эйнштейновской теории материи нет ничего, кроме геометрических свойств континуума (именно кривизны), так что между геометрией частиц и геометрией континуума нет различий"96.

5. Предел

В современной науке имеется одно понятие, которое, кажется, может до некоторой степени облегчить понимание физико-геометрического тождества в античном атоме. Это - понятие предела. Ведь предел никогда не достижим для переменной, монотонно изменяющейся величины, хотя расстояние между ними может стать меньше любой заданной величины. Так как античные атомисты вместе со всеми античными философами трактовали материю как нечто вечно подвижное и так как в глубине этой вечно подвижной материи они находили также элементы, которые сами по себе уже никогда не менялись, то, очевидно, неизменный атом данного типа вечно изменчивого вещества и был пределом изменения данного вещества.

Например, можно взять правильный многоугольник и рассматривать его то с большим, то с меньшим числом сторон. Но как бы мы ни изменяли эти многоугольники, логически ясно, что если треугольник можно превратить в шестиугольник, а шестиугольник - в двенадцатиугольник и т.д., то ничто не мешает нам представлять и бесконечноугольник. А это и будет круг. Круг есть, таким образом, предел вписанных в него или описанных около него правильных многоугольников при бесконечном увеличении числа их сторон. Само собою разумеется, вовсе не обязательно думать о круге, изменяя число сторон многоугольников. Но если мы хотим логически додумать до конца это изменение, то понятие о круге не может не появиться в нашем сознании. Такова логика этих фигур. Намеки на математическое понимание предела можно найти у Демокрита (Маков. 133. 134 и 68 В 155а, Маков. 135; В 155; Маков. 132).

Античные атомисты принадлежали к тем мыслителям, которые хотели додумать до конца все изменения, происходящие с данной вещью или с данным веществом. И если тут они пришли к понятию атома, то это явилось их величайшим завоеванием.

В наивной, но отнюдь не глупой форме они учили об истечении из атомов бесконечного числа их образов, которые и нужно считать не чем иным, как бесконечно разнообразным приближением соответствующего физического явления к лежащему в его основе атому (67 А 29. 30, 68 В 7). Во всяком случае, здесь действовала живейшая потребность додумать понятие изменения до конца. Да и мы в нашей диалектике можем мыслить изменения только тогда, когда есть нечто неизменное; движение предполагает нечто неподвижное, случайное - необходимость этого случайного. Отсюда делается понятным, почему действительно сущие атомы для действительно сложных тел оказывались только возможным бытием (Маков. 59).

Итак, историко-философский анализ обнаруживает, что физико-геометрическое тождество у атомистов есть результат логического продумывания до конца той разнокачественной материальной действительности, которая находится у них в вечном движении. Отсюда становится ясным и то, насколько сложно у античных атомистов понятие малости. Атом является здесь малым не потому, что это есть какое-то наименьшее количество вещества (ведь все наименьшее может стать еще меньше). Атом не есть здесь и некое очень маленькое, но остающиеся постоянным количество вещества в процессе изменения этого последнего. О разных пониманиях малости и о возможности атомов всяких размеров, включая атом, равный целому миру (см. 68 А 43.47). Если воспользоваться арифметической аналогией, то не является ни дробью с тем или иным количеством десятичных знаков, ни постоянным количеством, взятым в каком-либо неподвижном, изолированном и абсолютном смысле. есть предел для бесконечной и притом совершенно определенной переменной величины (1; 1,4; 1,41; 1,414...) Античный атом поэтому скорее не величина (он может быть любой величины), а закон получения или становления величин. Таким образом, античный атом при всем своем постоянстве и вечной неизменности не так уж неизменен и неподвижен. В нем всегда кроется бесконечное количество приближенных величин, для возникновения которых он является принципом.

6. Движение атома

Перейти на страницу:

Все книги серии История античной эстетики

Похожие книги

1. Объективная диалектика.
1. Объективная диалектика.

МатериалистическаяДИАЛЕКТИКАв пяти томахПод общей редакцией Ф. В. Константинова, В. Г. МараховаЧлены редколлегии:Ф. Ф. Вяккерев, В. Г. Иванов, М. Я. Корнеев, В. П. Петленко, Н. В. Пилипенко, Д. И. Попов, В. П. Рожин, А. А. Федосеев, Б. А. Чагин, В. В. ШелягОбъективная диалектикатом 1Ответственный редактор тома Ф. Ф. ВяккеревРедакторы введения и первой части В. П. Бранский, В. В. ИльинРедакторы второй части Ф. Ф. Вяккерев, Б. В. АхлибининскийМОСКВА «МЫСЛЬ» 1981РЕДАКЦИИ ФИЛОСОФСКОЙ ЛИТЕРАТУРЫКнига написана авторским коллективом:предисловие — Ф. В. Константиновым, В. Г. Мараховым; введение: § 1, 3, 5 — В. П. Бранским; § 2 — В. П. Бранским, В. В. Ильиным, А. С. Карминым; § 4 — В. П. Бранским, В. В. Ильиным, А. С. Карминым; § 6 — В. П. Бранским, Г. М. Елфимовым; глава I: § 1 — В. В. Ильиным; § 2 — А. С. Карминым, В. И. Свидерским; глава II — В. П. Бранским; г л а в а III: § 1 — В. В. Ильиным; § 2 — С. Ш. Авалиани, Б. Т. Алексеевым, А. М. Мостепаненко, В. И. Свидерским; глава IV: § 1 — В. В. Ильиным, И. 3. Налетовым; § 2 — В. В. Ильиным; § 3 — В. П. Бранским, В. В. Ильиным; § 4 — В. П. Бранским, В. В. Ильиным, Л. П. Шарыпиным; глава V: § 1 — Б. В. Ахлибининским, Ф. Ф. Вяккеревым; § 2 — А. С. Мамзиным, В. П. Рожиным; § 3 — Э. И. Колчинским; глава VI: § 1, 2, 4 — Б. В. Ахлибининским; § 3 — А. А. Корольковым; глава VII: § 1 — Ф. Ф. Вяккеревым; § 2 — Ф. Ф. Вяккеревым; В. Г. Мараховым; § 3 — Ф. Ф. Вяккеревым, Л. Н. Ляховой, В. А. Кайдаловым; глава VIII: § 1 — Ю. А. Хариным; § 2, 3, 4 — Р. В. Жердевым, А. М. Миклиным.

Александр Аркадьевич Корольков , Арнольд Михайлович Миклин , Виктор Васильевич Ильин , Фёдор Фёдорович Вяккерев , Юрий Андреевич Харин

Философия
MMIX - Год Быка
MMIX - Год Быка

Новое историко-психологическое и литературно-философское исследование символики главной книги Михаила Афанасьевича Булгакова позволило выявить, как минимум, пять сквозных слоев скрытого подтекста, не считая оригинальной историософской модели и девяти ключей-методов, зашифрованных Автором в Романе «Мастер и Маргарита».Выявленная взаимосвязь образов, сюжета, символики и идей Романа с книгами Нового Завета и историей рождения христианства настолько глубоки и масштабны, что речь фактически идёт о новом открытии Романа не только для литературоведения, но и для современной философии.Впервые исследование было опубликовано как электронная рукопись в блоге, «живом журнале»: http://oohoo.livejournal.com/, что определило особенности стиля книги.(с) Р.Романов, 2008-2009

Роман Романов , Роман Романович Романов

История / Литературоведение / Политика / Философия / Прочая научная литература / Психология