7) Предел. Историки математики правильно говорят, что в античности не было научно разработанного понятия предела. Но историки математики не всегда учитывают то обстоятельство, что античная наука большею частью оперирует интуитивными методами. В античности было интуитивное понимание предела и притом с интуитивной точки зрения весьма точное. Во всяком случае, когда здесь говорили о переходе одного элемента в другой (земля - вода - воздух - огонь эфир) и вообще о круговороте вещества, то почти всегда оперировали понятием предела. Здесь не место давать точное математическое определение предела. Достаточно будет сказать о том, что для предела требуется по крайней мере одна такая неподвижная точка, в направлении которой движется другая точка, и движется непрерывно, никогда ее не достигая, т.е. как бы ни было мало расстояние между этими двумя точками, между ними всегда можно вообразить еще третью точку.
Если иметь в виду это, пусть еще примитивное и элементарное понимание предела, то без него не обходилась ни одна философско-эстетическая система древности. Когда элейцы опровергали бесконечную делимость, они доказывали, что бесконечное количество точек на линии должно было бы приводить нас к отрезку бесконечно большого размера. Аргумент этот, как мы знаем, неправилен, потому что бесконечность точек может уместиться на любом самом малом отрезке. Однако, та теория, которую критикуют здесь элейцы, несомненно, исходит из бесконечной делимости отрезка прямой; и, следовательно, на этом отрезке любая точка такова, что никакая другая точка не может с ней слиться и потому может считаться пределом движения всякой другой точки на данном отрезке. В положительном смысле о бесконечной делимости учил Анаксагор, а в значительной степени - и атомисты. Согласно учению последних, атома невозможно было достигнуть путем деления реального физического тела, т.е. атом выступал здесь как предел бесконечного деления.
Эстетическое значение предела в ранней греческой эстетике огромно. Красоту греки хотели видеть недостижимой, но в то же время совершенно ясной и понятной в каждой точке движения реального мира. Для современной математики понятие предела и понятие непрерывного, никогда не достигающего своей цели движения (или мгновенного перескакивания через этот предел в дальнейшее становление), являются понятиями чисто научными, для демонстрации которых требуется минимальная интуиция. При достаточно абстрактной формулировке понятия предела здесь даже и совсем никакой интуиции не требуется. Однако - и с этим мы уже много раз встречались - в античности самые абстрактные теории мышления всегда базировались на чувственной интуиции; эта интуиция всегда выдвигалась на первый план и часто даже больше чем надо, часто даже ценою затемнения самой мысли. Поэтому недостижимость красоты, с одной стороны, а с другой стороны, постоянное наличие стремления к ней - это важнейший принцип античной эстетики. Путем последовательного проведения этого принципа в значительной мере достигалось выражение того общеизвестного эстетического феномена, что во всякой красоте есть вечное искание и ненасытное стремление, хотя, с другой стороны, красота так же понятна, ясна, определенна и достижима при помощи конечных и притом небольших переходов, как и всякая вообще чувственная вещь.
8) Красота как дифференциал. С точки зрения древних красота заключается, прежде всего, в совместимости и цельности, во взаимной зависимости, которую мы назвали бы теперь функциональной зависимостью. Кроме того, красота, о античной точки зрения, заключается в вечном движении. Но элементы, зависящие друг от друга и пребывающие в вечном и непрерывном движении, мы теперь называем аргументом и функцией, изменение которых непрерывно и едва заметно нарастает. Имея какой-нибудь непрерывно нарастающий аргумент, мы в то же время не можем не иметь и непрерывно нарастающей функции. Предел бесконечно малого нарастания функции называется дифференциалом. И, следовательно, если прекрасно вечное и непрерывное движение, а также если прекрасна и всякая непрерывная зависимость одного движения от другого, то ясно, что прекрасен и всякий дифференциал функции. Красота есть дифференциал. Отрицая в античной эстетике красоту в виде дифференциала, мы не сможем понять в ней взаимозависимости стихий и их вечного непрерывного движения. Примером красоты как дифференциала может служить любое философское учение о красоте в ранней классике, потому что вся эта классика исходит из непрерывного движения взаимозависимых стихий. Но первую роль играют здесь, конечно, все ионийцы во главе с атомистами.