Читаем Расплетая радугу: наука, заблуждения и тяга к чудесам полностью

Скиннер проводит аналогию с людьми-картежниками, у которых развиваются небольшие счастливые «тики» при игре в карты. Подобное поведение — также привычное зрелище на лужайках для игры в шары. Как только рука игрока в шары отпускает «вуд» (шар), игрок больше ничего не может сделать, чтобы способствовать его движению по направлению к «джеку» (целевому шару). Однако опытные игроки почти всегда спешат за своим шаром, часто все еще в согнутом положении, извиваясь и вращая телом, как будто чтобы передать отчаянные наставления уже невосприимчиваому шару, и часто говоря ему бесполезные слова ободрения. Однорукий бандит в Лас Вегасе — это ничто иное, как человеческая коробка Скиннера. «Клевание ключа» представлено не только дерганьем рычага, но также, конечно, и засовыванием монеты в щель автомата. Это действительно игра для дураков, потому что вероятности, как известно, настроены в пользу казино — как еще казино оплачивало бы свои огромные счета на электроэнергию? Выдает или нет данный поворот рычага джекпот, определяет случайность. Это прекрасный рецепт для суеверных привычек. Будьте уверены, если вы понаблюдаете за игроманами в Лас Вегасе, вы увидите движения, весьма напоминающие суеверных голубей Скиннера. Некоторые разговаривают с автоматом. Другие делают ему забавные знаки пальцами, поглаживают или ласкают его руками. Они когда-то ласкали его и выиграли джекпот, и они не забыли об этом. Я наблюдал людей с компьютерной зависимостью, с нетерпением ожидавших ответа сервера, которые вели себя подобным образом, скажем, постукивая по терминалу костяшками пальцев.

Человек, рассказавший мне о Лас Вегасе, также провела неофициальное исследование лондонских букмекерских контор. Она сообщает, что один определенный игрок обычно бежит, после того, как сделает ставку, к определенной плитке в полу, где стоит на одной ноге, наблюдая за скачками по букмекерскому телевидению. По-видимому он когда-то выиграл, стоя на этой плитке, и у него зародилась идея, что чуществует причинная связь. Теперь, если кто-то еще стоит на «его» счастливой плитке (некоторые другие спортсмены делают это специально, возможно, пытаясь похитить часть его «удачи», или просто чтобы его подразнить), он танцует вокруг нее, отчаянно стараясь стать на плитку, пока не кончился забег. Другие игроки отказываются менять рубашку или стричь волосы, пока у них «полоса везения». Для сравнения, один ирландский профессиональный игрок, у которого была прекрасная копна волос, побрил ее полностью налысо в отчаянной попытке изменить свою удачу. Его гипотеза была, что ему не везло с лошадьми, и у него было много волос. Возможно, это как-то взаимосвязано; возможно, эти факты части значимой системы! Прежде, чем мы почувствуем свое большое превосходство, позвольте напомнить, что многие из нас были воспитаны в вере, что удача Самсона совершенно изменилась, после того как Делила остригла ему волосы.

Откуда мы можем знать, какие наблюдаемые закономерности являются подлинными, а какие случайными и бессмысленными? Методы существуют, и они связаны с наукой статистики и постановки эксперимента. Я хочу уделить немного больше времени, объясняя некоторые принципы, хотя и не детали, статистики. Статистику во многом можно рассматривать искусством отличать систему от случайности. Случайность означает отсутствие закономерности. Есть различные способы объяснить понятия случайности и закономерности. Предположим, что я утверждаю, что могу различить почерк девочек и мальчиков. Если я прав, то это должно означать, что есть реальная закономерность, связывающая пол с почерком. Скептик мог бы усомниться в этом, соглашаясь, что почерк варьирует от человека к человеку, но отрицая, что есть связанная с полом система в этих вариациях. Как вы можете определить, чье утверждение верно, мое или скептика? Бесполезно просто принимать мое слово. Как суеверный игрок из Лас Вегаса, я мог бы легко принять полосу везения за реальное, проверенное умение. В любом случае, у вас есть полное право потребовать доказательств. Какое доказательство должно вас убедить? Ответ — доказательство, которое публично зафиксировано и должным образом проанализировано.

Утверждение, в любом случае, является лишь статистическим. Я не утверждаю (в данном гипотетическом примере — в действительности я не утверждаю ничего), что могу безошибочно судить о поле автора данного образца почерка. Я лишь утверждаю, что среди огромного разброса, существующего среди почерков, некоторые компоненты его вариаций коррелируют с полом. Поэтому даже при том, что я часто буду ошибаться, если вы дадите мне, скажем, 100 образцов почерка, я должен быть способен рассортировать их на мальчиков и девочек точнее, чем можно достичь просто случайным угадыванием. Из этого следует, что для того, чтобы дать оценку любому утверждению, вы оказываетесь перед необходимостью вычислять, насколько вероятно то, что данный результат мог быть достигнут случайным угадыванием. Еще раз, мы должны выполнить вычисления вероятности случайного совпадения.

Перейти на страницу:
Нет соединения с сервером, попробуйте зайти чуть позже