В результате мы изменили десятки аминокислот в рецепторных белках, и в 1988 году опубликовали две важные статьи об аминокислотах, влияющих на способ связи и активирования рецептора молекулами адреналина. Но, на удивление, эти молекулы не оказывали никакого влияния на бета-блокаторы типа пропранолола, которые также связывались с рецепторами. Из этих экспериментальных данных был сделан единственный вывод – точки на рецепторном белке, связывающиеся с активаторами вроде адреналина (так называемых «агонистов»), отличаются от точек на рецепторных белках, связывающихся с их блокаторами вроде пропранолола (так называемых «антагонистов»). Наше упрощенное представление о работе рецепторов теперь следовало пересмотреть. Всегда считалось, что гормоны работают по принципу «ключ к замку», где замок – рецептор, а антагонисты – просто неподходящие к нему ключи. Теперь оказывалось, что они могут действовать на какую-то другую деталь замка, но так, что замок все равно не срабатывает.
Выдвигать подобные гипотезы было бы гораздо легче, если бы мы имели модель адреналинового рецептора. Я вспомнил, как в начале моей работы в лаборатории Каплана его сотрудница Сьюзен Тейлор определила трехмерную структуру фермента лактатдегидрогеназы на основе данных рентгеновской кристаллографии. Затем была создана модель белка (1,2 метра в длину, в ширину и в высоту), которая наглядно показывала, как в клетках растений и животных этот фермент катализирует взаимные биохимические превращения пирувата и лактата в основном метаболизме. Я хотел сделать подобную модель адреналинового рецептора. Но чтобы «сфотографировать» рецепторный белок, он нужен в кристаллической форме, а для этого требуются его граммовые количества – примерно в миллион раз больше, чем мы в то время располагали. Изучив литературу, я обнаружил, что для массового производства белков успешно используются дрожжи, и нанял химика Дика Маккомби, чтобы он получил нужное для рентгеновской съемки количество белка.
Примерно в то же самое время бурно обсуждался проект, благодаря которому мои исследования в один прекрасный день оказались в центре внимания научной общественности. Я говорю о секвенировании генома человека. Одну из первых дискуссий в мае 1985 года на семинаре в Калифорнийском университете в Санта-Крус организовал Роберт Синсхаймер. Он надеялся, что такой важный проект привлечет внимание к его университету. Когда я уже начал работать в этой области, лауреат Нобелевской премии американец Ренато Дульбекко выступил в журнале
Большинство из обсуждавших тогда идею расшифровки генома человека были настроены крайне скептически, считая это абсолютно безнадежным делом. Высказывались против проекта и в НИЗ. Его директор Джеймс Вингаарден язвительно заметил, что «план Министерства энергетики очень похож на предложение Национального бюро стандартов построить бомбардировщик Б-2»{18}
. Даже Бреннер шутил, что задача столь грандиозна, а технические возможности столь ограничены, что секвенирование следует приравнять к уголовному наказанию – скажем, определение 12 миллионов оснований считать бытовым преступлением. А у меня появилась идея создать базу данных последовательности всех генов человека. При этом я почти десяток лет пытался декодировать всего лишь один из приблизительно 100 тысяч предполагаемых на тот момент генов человека! Но я был готов посвятить такой грандиозной задаче пару десятилетий, если за это время удастся расшифровать весь геном. Конечно, глупо использовать традиционный метод Сенгера с его радиоактивными маркерами, трескающимися гелями и бесконечными разочарованиями, а вот применить новые, автоматизированные технологии – совсем другое дело.Но как включиться в этот проект? Хорошо бы расширить лабораторию, но помещений в НИЗ недоставало. После разговора с Эрнстом Фризом (который благодаря моим успехам к этому времени стал активным сторонником секвенирования) и Ирвином Копином, директором программ Национального института неврологических расстройств и инсульта (