«Электронное облако», окружающее ядро, почти невесомо, и масса атома определяется суммой протонов и нейтронов. Она у металлов триады платины почти вдвое больше, чем у их аналогов триады палладия. А объем атомов у всех платиноидов почти одинаков и по сравнению со многими другими металлами очень мал. Плотность вещества определяет соотношение массы атома и его объема. Масса наиболее распространенного изотопа платины — 195, а золота 197, но платина тяжелее потому, что ее масса «втиснута» в меньший атомный объем (он равен 9,1 см2/г-атом, а у золота-10,2). У осмия и иридия соотношение между массой и объемом атома еще лучше-соответственно 190:8,5 и 192:8,6, и они чемпионы. Наиболее насыщено протонами и нейтронами ядро урана-238, но «квартира» велика — 12,6 см2/г-атом, и поэтому элемент с самым тяжелым в природе ядром соревнование проигрывает, его плотность «всего лишь» 19,0 г/см3.
Устойчивость любого атома обусловливается равенством между числом положительно заряженных протонов ядра и окружающих его электронов, несущих отрицательный заряд. Строение «электронного облака» неравномерно, орбиты движения ориентированы в пространстве и группируются в оболочки, каждая из которых предельно может вмещать 2n2 электронов, где п — номер оболочки, считая от ядра. (Первая оболочка вмещает 2, вторая 8, следующие 18, 32, 50 и т. д. электронов. В таблице 2 показано их распределение на различных энергетических уровнях каждой оболочки.)
Как известно, металлы отличаются от неметаллов малым числом электронов на внешней оболочке, что обусловливает их легкий отрыв и превращение «нейтральных» атомов в положительно заряженные ионы. Интенсивность таких процессов во многом определяется строением «предвнешних» оболочек. По этому признаку выделяют «непереходные» элементы — у них на всех внутренних оболочках полный комплект электронов, они как бы «связаны» и неспособны помогать своим коллегам, «сражающимся» на передовой.
Такие элементы не стойки и легко утрачивают самостоятельность. В отличие от них у элементов, называемых переходными, не все внутренние уровни заполнены электронами, и они способны перемещаться, становиться валентными. При этом из глубин атома как бы происходит приток свежей «силы». Установлено, что среди переходных элементов лучшими технологическими свойствами обладают те, у которых не полностью заполнен уровень d (вольфрам, молибден, рений и др.). К таким d-элементам принадлежат и все платиновые металлы (с оговоркой, что палладий имеет такое строение только в ионизированном состоянии). Важное отличие платиноидов, а также золота н серебра от других d-элементов заключается в том, что у них при малом заполнении уровня d совсем не заполнен «предвнешннй» уровень f. Такое сочетание обусловливает особо широкий диапазон перемещения электронов и большую энергию связей. Это отличает благородные металлы от всех иных.
Строение атомов объясняет загадочную особенность рутения, выявленную еще Клаусом. Оказалось, что по разнообразию валентности рутений — чемпион. Известны соединения, в которых она равна нулю- Ru(CO)n, единице-Ru(CO)nBr, двум, трем, четырем-RuO2 (это наиболее распространенный вид соединений), а также пяти… и т. д. до восьми — RuO4. Но и этими — девятью! валентностями его способность, как оказалось, не ограничена. Клаусом были получены соединения, строение которых не удавалось объяснить обычными представлениями о валентности.
В конце прошлого века швейцарский химик А. Вернер, развив представления Клауса, создал основы теории комплексных соединений, в которых центральное место занимает атом металла-рутения, платины и других «склонных к комплексообразованию», способных крепко удерживать не только отдельные атомы, но и лиганды — различные их соединения (радикалы, молекулы неорганические и органические). Строение таких комплексов определяется координационным числом, отражающим, какое количество лиганд центральный атом может удержать.
Представления Вернера получили обоснование и блестящее развитие в трудах Льва Александровича Чугаева. Он создал много комплексных соединений платины, палладия, никеля и установил, что все они по своей структуре аналогичны органическим соединениям. Стереохимическими построениями он выявил закономерность расположения лиганд в пространстве и обосновал «правило циклов», позволяющее целенаправленно создавать наиболее устойчивые комплексы.