Все рандеву здесь отвечают главной идее: путешествию в прошлое. Однако в истории эволюции было событие – возможно, важнейшее из всех, – которое представляло собой рандеву в буквальном смысле. Речь об образовании эукариотической (то есть имеющей ядро) клетки: миниатюрного высокотехнологичного устройства, которое стало базовым элементом сложной и разнообразной жизни на нашей планете. Чтобы противопоставить это событие остальным условным пунктам рандеву, я назвал его Великим историческим рандеву. Слово “историческое” здесь имеет двойное значение: во-первых, оно “очень важное”, а во-вторых, указывает на то, что хронология событий здесь прямая, а не обратная, как в остальной книге.
Я говорю о Великом историческом рандеву как о
Около 2 млрд лет назад одноклеточный организм, что-то вроде протопростейшего, вступил в странные отношения с бактерией, подобные тем, что мы наблюдали в случае миксотрихи. Это произошло не один раз, и, возможно, эпизоды этой истории отделены друг от друга сотнями миллионов лет. Все наши клетки похожи на миксотриху, нашпигованную бактериями, которые за время сотрудничества с клеткой-хозяином изменились так сильно, что сегодня их бактериальное происхождение почти незаметно. Эти отношения зашли дальше, чем у миксотрихи, и бактерии вступили в настолько тесную связь с эукариотической клеткой, что обнаружение их воистину стало научным подвигом. Мне нравится сравнение сотрудничества некогда самостоятельных клеточных элементов с улыбкой Чеширского Кота, которое провел сэр Дэвид Смит, один из ведущих специалистов по симбиозу.
Инвазивный организм, обитая в клетке, может постепенно утрачивать себя, медленно растворяясь, и лишь реликтовые признаки будут выдавать его происхождение. Это напоминает встречу Алисы с Чеширским Котом: “На этот раз он исчез очень медленно. Первым исчез кончик хвоста, а последней – улыбка, она еще долго парила в воздухе, когда все остальное уже пропало”. Многие клеточные структуры похожи на улыбку Чеширского Кота. И тем, кто пытается выявить их происхождение, “улыбка” кажется многообещающей и очень загадочной.
Какими биохимическими талантами эти некогда свободные бактерии поделились с нами? Вот два главных приобретения: фотосинтез, который использует солнечную энергию для синтеза органических соединений и выделяет в качестве побочного продукта кислород, и окислительный метаболизм, который использует кислород (поступающий, в конечном счете, от растений) для медленного сжигания органических веществ и аккумулирования энергии, поступившей от Солнца. Эти химические технологии разработаны бактериями задолго до Великого исторического рандеву, и, можно сказать, еще никто не превзошел бактерии в умении ими пользоваться. Однако теперь бактерии оттачивают свое мастерство на специализированных фабриках: в эукариотических клетках.
Фотосинтетические бактерии до недавнего времени назывались сине-зелеными водорослями. Это очень неудачное название: во-первых, большинство их совершенно иной окраски, во-вторых, они не водоросли. Чаще всего фотосинтетические бактерии имеют зеленую окраску, и было бы логично называть их зелеными бактериями. Впрочем, иногда они могут быть красноватыми, желтоватыми, коричневатыми, черноватыми и – в некоторых случаях – сине-зелеными. Название “зеленые бактерии” удачно и потому, что слово “зеленый” часто используют для обозначения фотосинтезирующего организма. Сегодня научное название фотосинтетических бактерий – цианобактерии. Они относятся к настоящим бактериям и, судя по всему, образуют “хорошую” монофилетическую группу. Иными словами, они представляют собой всех потомков одного предка, который сам относится к цианобактериям.