С тех пор как в начале XX века вольфрамовая нить вытеснила применявшиеся ранее для изготовления электрических ламп угольные, осмиевые и танталовые нити, каждый вечер в наших домах вспыхивают крохотные вольфрамовые молнии. Ежегодно в мире производят несколько миллиардов электроламп. Миллиарды огней!.. А много ли это? Судите сами: с начала нашего летоисчисления человечество прожило лишь немногим более миллиарда минут[5].
Ученые и инженеры постоянно совершенствуют электрическую лампу, стремясь к тому, чтобы ее жизнь продолжалась как можно дольше. Подобно тому как тает горящая восковая свеча, при включении лампы вольфрам начинает испаряться с поверхности нити накаливания. Чтобы уменьшить испарение и тем самым продлить срок службы лампы, в нее под давлением обычно вводят различные инертные газы. А недавно предложено использовать для этой цели пары иода, который, как выяснилось, играет любопытную роль: он ловит испарившиеся молекулы вольфрама, вступает с ним в химическую связь, а затем оседает на нити, тем самым возвращая ей "беглецов". Такая лампа намного долговечнее.
Ассортимент электрических ламп, выпускаемых промышленностью, весьма разнообразен: от миниатюрных "бусинок", используемых в медицине, до мощных прожекторных "солнц". В 1967 году на Всемирной выставке в Монреале в павильоне СССР демонстрировалась установка радиационного нагрева "Уран-1", одним из главных элементов которой служит лампа оригинальной конструкции, снабженная водяным и воздушным охлаждением. В сравнительно небольшой колбе из жаростойкого кварца, наполненной инертным газом ксеноном, находятся два вольфрамовых электрода. При включении лампы между электродами вспыхивает газовая плазма, раскаленная до 8000 °C. Специальный зеркальный отражатель, по сравнению с которым обычные зеркала кажутся тусклыми жестянками, направляет инфракрасные лучи искусственного солнца (лампа воссоздает солнечный спектр) в оптическую систему установки, где они фокусируются в единый поток диаметром чуть больше сантиметра. Температура в фокусе пучка лучей достигает 3000 °C. В этом горячем режиме "Уран-1" может непрерывно работать сотни часов.
Широкое применение в технике находят так называемые катодные лучи, которые представляют собой поток электронов, вырывающихся с поверхности металлического катода в вакуум (электронная эмиссия). Как показала практика, одним из лучших материалов для катодов оказался вольфрам.
Одна из важных особенностей вольфрама — высокая плотность: он такой же тяжелый, как золото. В этом отношении вольфрам немного уступает лишь осмию, иридию и платине, но зато он значительно уступает им и в цене. Для самолетов или космических ракет тяжесть материала, как правило, явный недостаток, однако в некоторых других областях техники это качество, как говорится, на вес золота. Но ведь не будут же конструкторы и в самом деле применять в таких случаях золото или платину — слишком накладно. А вот вольфрам здесь вполне подходит: на его основе созданы так называемые тяжелые сплавы, уже нашедшие себе разнообразное применение. Из них изготовляют радиационные экраны (более надежные, чем свинцовые), контейнеры для радиоактивных изотопов, всевозможные балансиры и противовесы в часах и других устройствах, роторы гироскопов, сердечники для бронебойных снарядов и прочие детали и изделия, которые должны иметь солидный "вес в обществе".
Чистый вольфрам обладает и колоссальной прочностью: его сопротивление разрыву достигает. 40 тонн на квадратный сантиметр, значительно превышая прочность лучшей стали. И такие отменные прочностные характеристики металл ухитряется сохранять даже при 800 °C!
Высокая прочность металлического вольфрама сочетается с хорошей пластичностью: из него можно вытянуть тончайшую проволоку, 100 километров которой весят всего 250 граммов!
Вольфрамовая проволока, широко применяющаяся в электролампах, обрела недавно еще одну профессию: ее предложено использовать в качестве режущего инструмента для обработки хрупких материалов. Ультразвуковой генератор при помощи преобразователя придает вольфрамовой нити колебательные движения, и она медленно, но верно врезается в обрабатываемый материал. Новый "резак" легко справляется с такими капризными материалами, как кварц, рубин, ситалл, стекло, керамика, разрезая их с ювелирной точностью на части или оставляя в них пазы и щели любой формы, любых размеров. Но как ни велика прочность вольфрамовой проволоки, она не идет ни в какое сравнение с прочностью "усов" из этого металла — тончайших кристалликов, которые в сотни раз тоньше человеческого волоса. Советские физики сумели получить вольфрамовые "усы" диаметром всего две миллионные доли сантиметра. Их прочность составляет 230 тонн на квадратный сантиметр — это почти равно абсолютному потолку прочности, т. е. теоретическому пределу для земных веществ, определенному расчетным путем. Но такой чудо-металл существует пока только в стенах лабораторий
Василий Кузьмич Фетисов , Евгений Ильич Ильин , Ирина Анатольевна Михайлова , Константин Никандрович Фарутин , Михаил Евграфович Салтыков-Щедрин , Софья Борисовна Радзиевская
Приключения / Публицистика / Детская литература / Детская образовательная литература / Природа и животные / Книги Для ДетейАлла Робертовна Швандерова , Анатолий Борисович Венгеров , Валерий Кулиевич Цечоев , Михаил Борисович Смоленский , Сергей Сергеевич Алексеев
Детская образовательная литература / Государство и право / Юриспруденция / Учебники и пособия / Прочая научная литература / Образование и наука