Дело в том, что в 1789 году Клапрот открыл не только цирконий, но и еще один замечательный элемент, которому суждено было сыграть выдающуюся роль в науке и технике XX века. Этим элементом был уран. Ни сам Клапрот, ни кто-либо другой не могли тогда предвидеть, как сложатся судьбы «братьев» - циркония и урана. Пути их разошлись надолго: в течение полутора веков ничто не связывало эти элементы. И только в наши дни после долгой разлуки они встретились вновь. Сначала об этом знали лишь очень немногие ученые и инженеры, работавшие в области ядерной энергетики, куда, как известно, «посторонним вход воспрещен». Встреча состоялась в атомных реакторах, где уран использовали как ядерное топливо, а цирконий должен был служить оболочкой для урановых стержней. Впрочем, точности ради, отметим, что еще за несколько лет до этого американские ученые попробовали применять цирконий в качестве материала для ядерного реактора, который был установлен на первой атомной подводной лодке США «Наутилус». Однако вскоре выяснилось, что из циркония выгоднее делать не стационарные детали активной зоны реактора, а оболочки топливных элементов. Вот тогда-то уран и попал в «объятия» циркония.
Выбор на цирконий пал не случайно: физикам было известно, что он в отличие от многих других металлов, легко пропускает нейтроны («нейтронная прозрачность»), а именно таким свойством должен обладать материал для корпусов урановых стержней. Правда, некоторые металлы - магний, алюминий, олово - в этом отношении сходны с цирконием, но они легкоплавки и нежаропрочны.
Цирконию же. который плавится лишь при 1850°С, тепловые нагрузки ядерной энергетики вполне по плечу.
Однако и у циркония есть кое-какие «грешки», которые могли бы помешать ему работать в этой ответственной области. Дело в том, что «прозрачен» для нейтронов только цирконий высокой степени чистоты. Вот тут-то и приходится снова вспомнить о гафнии - металле, который по химическим свойствам может быть назван «близнецом» циркония. Но «взгляды» на нейтроны у них оказались противоположными: гафний с жадностью поглощает нейтроны (в 500 - 600 раз сильнее, чем цирконий). Более того, примеси гафния даже в гомеопатических дозах способны испортить «кровь» цирконию и лишить его нейтронной прозрачности. Технические условия на цирконий так называемой «реакторной чистоты» допускают присутствие в нем не больше 0,02% гафния. Но и такие «крохи» довольно существенно - в шесть с половиной раз - снижают нейтронную прозрачность циркония.
Поскольку в природе эти металлы обычно находятся вместе, получить полностью свободный от гафния цирконий - задача колоссальной трудности. И тем не менее химикам и металлургам пришлось взяться за эту проблему, так как атомная промышленность крайне нуждалась в конструкционном материале.
Когда задача была решена, на повестку дня встала другая: требовалось добиться того, чтобы при изготовлении конструкций из чистейшего циркония в процессе сварки в него не попадали «чужеродные атомы», которые могли бы оказаться непреодолимой преградой на пути нейтронов и тем самым свести на нет все достоинства этого металла. К тому же сварку нужно было проводить таким образом, чтобы не нарушить однородность металла: сварочный шов должен обладать теми же свойствами, что и свариваемый материал. На помощь был призван электронный луч. Чистота и точность электроннолучевой сварки позволили решить и эту проблему - цирконий стал «одеждой» урановых стержней.
Именно тогда и произошел резкий скачок в производстве этого металла: только за десятилетие - с 1949 по 1959 год - мировое производство циркония возросло в 1000 раз! В ход пошли большие скопления цирконовых песков, которые раньше служили отходами при добыче других ископаемых. Так, в Калифорнии, при добыче золота драгами в руслах древних рек вместе с золотом на промывку поднимали значительное количество циркона, но из-за отсутствия спроса его сбрасывали в отвалы. На побережье в штате Орегон (США) в годы войны добывали хромит и попутно получали некоторое количество циркона, который не интересовал тогда промышленность и потому не вывозила с места добычи. Когда же вскоре после войны начался циркониевый бум, все эти отвалы оказались «лакомым кусочком».
Сейчас крупные месторождения этого ценного элемента разрабатывают в США, Австралии, Бразилии, Индии, странах Западной Африки. Отличной рудой циркония часто служат прибрежные пески. В Австралии, например, цирконовые россыпи простираются почти на 150 километров вдоль океанского побережья. Значительными запасами циркониевого сырья располагает и Советский Союз.