Читаем Расследование и предупреждение техногенных катастроф. Научный детектив полностью

[mD3 + (2 + 2 m)D2 + (4 + m)D + 2]x1 = (D +1)

2 x2                                                              (16)

[mD2 + (2 + 2m)D + 5]x1 = (D +

1)x2                                                                       (17)

Уравнение (16) является уравнением объекта управления, уравнение (17) — уравнением регулятора, который на этот раз для формирования управляющего воздействия х2 использует легко доступную для непосредственного измерения переменную х1.

Для исследования устойчивости системы (16)—(17) достаточно найти корни ее характеристического полинома.

И вот здесь исследователей подстерегала трудность, которая надолго задержала правильный ответ о причинах техногенных катастроф, связанных с «аналитически сконструированными» регуляторами, и укоротила жизнь А. М. Летова: если вычислять характеристический полином системы (16)—(17) по общим математическим правилам как определитель:

                              (18)

то он, как легко проверить, будет равен определителю (14) и мы снова должны будем сделать вывод о том, что замкнутая система устойчива и сохраняет устойчивость при «дрейфе» параметра m .

Однако этот вывод будет ошибочен! Дело в том, что объект управления (электропривод) и регулятор — это разные (хотя и расположенные рядом) устройства, поэтому «дрейф» их параметров может идти независимо друг от друга, образуя самые причудливые комбинации. Рассмотрим простейший (но возможный) случай: параметры регулятора остались равными номинальным значениям (соответствующим т — 1), а в объекте управления механическая постоянная времени немного изменилась. Для анализа устойчивости этого случая надо вычислить определитель:

                           (19)

Пусть m = 1 + , где    - малое число и можно пренебречь членами с 2, 3

и др. Тогда сразу видно, что при > 0 замкнутая система неустойчива, в решении системы, кроме членов, отраженных формулой (15), появляется очень быстро растущий четвертый член вида

                                                                                                        (20)

а при < 0 устойчивость сохраняется. Исключение переменных х и х из уравнения (10), (12), (13) при правильном учете реальных связей между «дрейфом» параметров в технической системе является примером эквивалентного преобразования, изменяющего свойство сохранения устойчивости при дрейфе параметров.

Формула (19) раскрывает еще одно опаснейшее и очень коварное свойство технических объектов, спроектированных по привычным методикам, без учета новых явлений, открытых в СПбГУ: при изготовлении любого технического устройства малые отклонения реальных параметров (а значит, и коэффициентов математической модели) от расчетных значений неизбежны, но знак этих отклонений не предсказуем. Вполне может оказаться, что реальная величина параметра будет меньше расчетной, т.е. окажется, что < 0. Тогда изготовленное устройство окажется устойчивым и нормально работающим. Оно будет иметь малый запас устойчивости — но на испытаниях реального устройства запас устойчивости проверить чаще всего невозможно (обычно рекомендуемое «покачивание параметров» редко помогает — о причинах этого подробно рассказано в [2]). Поэтому изготовленное устройство будет признано хорошим и может быть установлено, например, на самолете как одна из его многочисленных систем. Устройство будет исправно работать не предсказуемое заранее время — до тех пор, пока при неизбежном в ходе эксплуатации «дрейфе» параметров устройство потеряет устойчивость, «пойдет в разнос» и вызовет аварию, которая может перерасти в катастрофу, с гибелью пассажиров и экипажа.

Подобные аварии происходят не каждый день, а несколько реже только потому, что «особые» системы и устройства, для которых привычные методы расчета дают неверные данные о запасах устойчивости, встречаются не очень часто. Но мириться с авариями нельзя, а предотвращать их можно только проверкой технической документации самолетов на основе методов, разработанных в СПбГУ и «Военмехе».

Формулы (19) и (20) иллюстрируют основные черты аварий, произошедших именно по причине неполноты привычных методов расчета, о которых уже говорилось в параграфе 8: благодаря наличию быстро растущего члена (20) в переходном процессе, авария развивается очень быстро; если же она не привела к гибели самолета, то через некоторое время малый «дрейф» параметров может привести к тому, что малое > 0 превратится в малое < 0 и устройство снова будет работать нормально (хотя малый запас устойчивости сохранится). Мы убеждаемся, что это те самые особенности, которые проявились у аварий над Междуреченском и Бухарестом, о которых говорилось в параграфе 8.

Перейти на страницу:
Нет соединения с сервером, попробуйте зайти чуть позже