Читаем Расследование и предупреждение техногенных катастроф. Научный детектив полностью

Систему (22)—(23) — как и любые другие — удобно решать путем эквивалентных преобразований. Достаточно вычесть из уравнения (22) уравнение (23). Получим уравнение

0,02х = 0,04                                                                                                      (24)

не содержащее уже переменной у, которое вместе с уравнением (23) образует систему

Х + У = 1                                                                                                            (25)

0,02х = 0,04                                                                                                       (26)

Система (25)—(26) эквивалентна исходной системе (22)—(23), но решается гораздо проще: из (26) сразу следует х = 2, а подставив х = 2 в (25), получим у — — 1. Отметим, что тем же путем последовательного исключения переменных путем эквивалентных преобразований решают (следуя методу Гаусса) и системы, состоящие из большого числа уравнений. Просто число необходимых преобразований и вычислений очень быстро растет с ростом числа уравнений в системе, и поэтому для решения больших систем, часто встречающихся при проектировании, требуются компьютеры.

А теперь рассмотрим самое важное: решения х = 2, у = — 1 системы (22)—(23) верны, но на самом деле для практического использования не пригодны. Действительно, достаточно всего одному из коэффициентов системы (например, коэффициенту 1,02 при х) измениться менее, чем на 1%, от значения 1,02 перейти к значению 1,01, и изменившаяся система, принявшая теперь вид

1,01х + у = 1,041                                                                                (27)

х + у = 1

имеет решения х = 4, у = -3. Таким образом, изменение всего одного коэффициента менее, чем на одну сотую приводит к изменению решений вдвое и втрое. Поскольку в практических задачах исходные данные известны часто с точностью меньшей, чем одна сотая, то решения системы (22)—(23) для практики не пригодны. Их некритическое использование может привести к авариям и катастрофам.

Но ничего этого нельзя заметить при исследовании системы (25)—(26), которая эквивалентна исходной системе (22)—(23) и получена из нее путем эквивалентных преобразований. Система (25)—(26) мало чувствительна к малым изменениям своих коэффициентов.

Если каждый из них изменится на ± 0,01 то решения изменятся не более, чем на ± 4 %, а совсем не вдвое и втрое.

Таким образом, простая система (22)—(23) иллюстрирует главный и наиболее важный вывод: эквивалентные преобразования, широко (и часто некритично) применяемые при расчетах, не меняя самих решений как таковых, могут изменять многие важные свойства решений и, в частности — могут изменять их чувствительность к неизбежным на практике малым неточностям исходных данных, которые почти всегда получаются из опыта или измерения и поэтому имеют ограниченную точность.

Данному явлению можно дать и вполне наглядную иллюстрацию: уравнения (22)—(23) — это уравнения прямых на плоскости с осями 0x и , а решения х = 2, у = — 1 — это координаты точки их пересечения. На рис. 1 показаны прямые, соответствующие уравнениям (22)—(23). Эти прямые пересекаются в точке X — 2, у ——1 под очень острым углом. Именно поэтому координаты их точки пересечения очень чувствительны к изменениям коэффициентов уравнений (22)—(23).

На рис. 2 показаны прямые, соответствующие уравнениям системы (25)—(26), которая, как уже говорилось, эквивалентна исходной системе (22)—(23). Мы убеждаемся, что точка пересечения прямых, как и должно быть, осталась прежней х = 2, у = —1, но угол между прямыми стал совсем другим, гораздо менее острым, и поэтому высокая чувствительность решений к малым неточностям в исходных данных кажется исчезнувшей.

Конечно, в простейшей системе из двух уравнений все ясно, но уже в системах из 5—7, а тем более из многих десятков уравнений уже совсем не ясно, к каким погрешностям решений приведет погрешность исходных данных, например, на ±1 %. Поэтому отсутствие во многих пакетах прикладных программ оценок погрешностей решений систем уравнений в зависимости от погрешностей исходных данных является недостатком, который может быть источником ошибок в расчетах, а значит — порожденных этими ошибками аварий и катастроф.

5. Для решения ряда практических задач используют, как известно, интегральные уравнения, и некоторые пакеты прикладных программ снабжены программами их решения. Методы решения интегральных уравнений были рассмотрены профессором В. С. Сизиковым в монографии [3], где им были обнаружены недостатки традиционных методов и программ, связанные с тем, что применяемые при решении эквивалентные преобразования интегральных уравнений в ряде случаев изменяют корректность решаемой задачи и тем самым приводят к ошибкам.

Перейти на страницу:
Нет соединения с сервером, попробуйте зайти чуть позже