Читаем Расследование и предупреждение техногенных катастроф. Научный детектив полностью

Даже сегодняшние «гуманитарии», наверное, помнят, как в средней школе им рассказывали о простейших эквивалентных (равносильных) преобразованиях:

1. Перенос членов из левой части в правую и наоборот с изменением знака;

2. Умножение всех членов на число, не равное нулю;

3. Подстановка — т. е. замена любого члена на член, равный ему.

Основное свойство эквивалентных преобразований — они не изменяют решений уравнений. Но при этом очень долгое время (вплоть до 1987 года) никто не замечал, что эквивалентные преобразования могут изменять некоторые важные свойства решений. Одно из важнейших свойств — при малых изменениях исходных данных решение должно изменяться мало. Такое свойство решений называют иногда — корректностью, иногда — параметрической устойчивостью. Это свойство важно потому, что на практике все исходные данные проектирования и расчета известны всегда с ограниченной, конечной точностью, да еще к тому же часто немного изменяются с течением времени.

Если при изменении исходных данных расчета (например — диаметра круглой колонны) на 1% результат расчета (например — критическая нагрузка колонны) изменится в два раза, то такой расчет, разумеется, никакого практического смысла не имеет. Здание, построенное по такому нелепому расчету, разумеется, обязательно рухнет. Корректность решений для практики важна, очень важна. Поэтому корректность всегда тщательно проверяют. Но в 1987 году в СПбГУ было открыто, что существуют особые объекты, в математических моделях которых корректность изменяется при эквивалентных преобразованиях. Для таких особых объектов традиционные методы проверки корректности не достоверны, и поэтому каждая встреча с особым объектом может обернуться аварией и даже катастрофой. Особые объекты были открыты так поздно потому, что они встречаются редко, но несмотря на свою редкость они очень опасны. Мы знаем, что и катастрофы происходят редко, не каждый день, но попасть в катастрофу никому не хочется.

Для того чтобы катастроф было меньше и наша жизнь стала безопаснее, надо уметь еще на стадии расчета и проектирования найти и выделить «особые» объекты. Об интереснейшей истории открытия особых объектов и разработки методов их распознавания и выделения мы далее расскажем, а пока приведем совсем простой числовой пример, который сразу прояснит суть дела. Никаких знаний, кроме школьной алгебры, для понимания примера не нужно.

Рассмотрим систему двух алгебраических уравнений:

(2λ2 + 2)х =                                                          (1)

2+λ)χ = y                                                              (2)

с двумя переменными х и у и параметром λ.

Поскольку уравнения (1) и (2) однородны, то они, разумеется, имеют нулевое решение х = у = 0. Однако при некоторых значениях параметра λ система, состоящая из уравнений (1) и (2), имеет не нулевые решения. Значения параметра, при которых система однородных уравнений имеет не нулевые решения, называют собственными значениями (или собственными числами). Для системы (1) и (2) единственным собственным значением является λ = 1. Действительно, при подстановке в (1) и (2) значения λ = 1, система (1)-(2) переходит в систему:

4x = 2y                                                                      (3)

2x = у                                                                        (4)

и имеет, например, решения: х = 1; у = 2 или х = 2; у = 4 и многие другие. А вот при λ = 1 система (1)-(2) не нулевых решений не имеет. Это можно установить кропотливой проверкой, проверив все возможные значения параметра λ .

Заметим сразу, что задача вычисления собственных значений (разумеется, для систем гораздо более сложных, чем простейшая система (1) и (2)) имеет очень важное значение в технике. От величин собственных значений зависит устойчивость того или иного технического объекта, здания, сооружения, зависят частоты его колебаний и т. п.

Поэтому задаче вычисления собственных значений, различным методам их расчета, посвящены целые книги (например книга: Х. Д. Икрамов. Несимметричная проблема собственных значений, издательство «Наука», 1991 г., 240 страниц или: Уилкинсон Д. Х. Алгебраическая проблема собственных значений, издательство «Наука», 1970 г., 564 страницы и многие другие). И все методы используют эквивалентные преобразования. А то, что может произойти при эквивалентных преобразованиях, мы покажем на простейшем примере системы (1)-(2).

Вместо громоздкого перебора всех возможных значений λ , собственное значение легко найти эквивалентным преобразованием — подстановкой. Подставив значение переменной у из уравнений (2) в уравнение (1), мы получим:

(2λ2 + 2)х = 2(λ2 + λ)χ,                                                    (5)

Приведя подобные члены, получим:

(2λ - 2)χ = 0.                                                                   (6)

Из уравнения (6) сразу следует, что не нулевые решения для х возможны лишь, если λ = 1.

Таким образом, эквивалентные преобразования позволили легко и просто найти (как и следовало ожидать) правильную величину собственных значений. Здесь все верно.

Перейти на страницу:

Похожие книги

100 знаменитых загадок истории
100 знаменитых загадок истории

Многовековая история человечества хранит множество загадок. Эта книга поможет читателю приоткрыть завесу над тайнами исторических событий и явлений различных эпох – от древнейших до наших дней, расскажет о судьбах многих легендарных личностей прошлого: царицы Савской и короля Макбета, Жанны д'Арк и Александра I, Екатерины Медичи и Наполеона, Ивана Грозного и Шекспира.Здесь вы найдете новые интересные версии о гибели Атлантиды и Всемирном потопе, призрачном золоте Эльдорадо и тайне Туринской плащаницы, двойниках Анастасии и Сталина, злой силе Распутина и Катынской трагедии, сыновьях Гитлера и обстоятельствах гибели «Курска», подлинных событиях 11 сентября 2001 года и о многом другом.Перевернув последнюю страницу книги, вы еще раз убедитесь в правоте слов английского историка и политика XIX века Томаса Маклея: «Кто хорошо осведомлен о прошлом, никогда не станет отчаиваться по поводу настоящего».

Илья Яковлевич Вагман , Инга Юрьевна Романенко , Мария Александровна Панкова , Ольга Александровна Кузьменко

Фантастика / Энциклопедии / Альтернативная история / Словари и Энциклопедии / Публицистика
100 великих угроз цивилизации
100 великих угроз цивилизации

Человечество вступило в третье тысячелетие. Что приготовил нам XXI век? С момента возникновения человечество волнуют проблемы безопасности. В процессе развития цивилизации люди смогли ответить на многие опасности природной стихии и общественного развития изменением образа жизни и новыми технологиями. Но сегодня, в начале нового тысячелетия, на очередном высоком витке спирали развития нельзя утверждать, что полностью исчезли старые традиционные виды вызовов и угроз. Более того, возникли новые опасности, которые многократно усилили риски возникновения аварий, катастроф и стихийных бедствий настолько, что проблемы обеспечения безопасности стали на ближайшее будущее приоритетными.О ста наиболее значительных вызовах и угрозах нашей цивилизации рассказывает очередная книга серии.

Анатолий Сергеевич Бернацкий

Публицистика
10 дней в ИГИЛ* (* Организация запрещена на территории РФ)
10 дней в ИГИЛ* (* Организация запрещена на территории РФ)

[b]Организация ИГИЛ запрещена на территории РФ.[/b]Эта книга – шокирующий рассказ о десяти днях, проведенных немецким журналистом на территории, захваченной запрещенной в России террористической организацией «Исламское государство» (ИГИЛ, ИГ). Юрген Тоденхёфер стал первым западным журналистом, сумевшим выбраться оттуда живым. Все это время он буквально ходил по лезвию ножа, общаясь с боевиками, «чиновниками» и местным населением, скрываясь от американских беспилотников и бомб…С предельной честностью и беспристрастностью автор анализирует идеологию террористов. Составив психологические портреты боевиков, он выясняет, что заставило всех этих людей оставить семью, приличную работу, всю свою прежнюю жизнь – чтобы стать врагами человечества.

Юрген Тоденхёфер

Документальная литература / Публицистика / Документальное