Ввиду важности понятия одновременности остановимся на этом подробнее. Рассмотрим высказывание: пусть в момент времени
Однако сторонник теории относительности полагает, что отметки на осях координат можно делать за время равное нулю, а отметки на часах о времени события нельзя сделать за время равное нулю. Как он это узнал? Ведь материальная точка может находиться на очень большом удалении не только от часов, но и от осей координат. Эта непоследовательность (а точнее, отказ от нуль – соглашения) и привела к «релятивистскому» понятию одновременности, когда два одновременных события в одной системе координат становятся уже неодновременными в другой системе координат.
Конечно, на практике, как при измерении координат, так и при измерении времени, мы всегда используем конечные скорости распространения сигнала. Но наши формулы должны быть устроены так, чтобы они все равно приводили бы к выполнению нуль – соглашения. Если они к этому не приводят, значит – они неверны. Нам приходится об этом говорить, потому что об этом забывают.
Резюмируем сказанное. Наша точка зрения такова. Сторонники теории относительности нарушили нуль – соглашение и это привело к появлению многочисленных «парадоксов». Но это на самом деле не «парадоксы». Это настоящие противоречия, «парадоксами» мы их называем по традиции. Ни одно из этих противоречий не было и не могло быть удовлетворительно разрешено в рамках теории относительности. Многочисленные попытки разрешить эти противоречия – яркие примеры того, как нужно «правильно рассуждать неправильно». Это потому, что нельзя разрешить противоречие, выдвигаемое теорией, с помощью этой же самой теории.
1. 7. Скорость материальной точки
Пусть в начальный момент
Решая это уравнение относительно
Эта формула отличается от обычной (классической) формулы наличием в знаменателе члена
Или
Таким образом, начиная с формул (1. 4) и (1. 5) нам следует отличать величины:
1. 8. Сложение скоростей
Пусть относительно системы координат
Время, отсчитанное часами по достижению точкой координаты
Путь, пройденный за это время системой
Путь, пройденный за это время точкой относительно системы
Путь, пройденный за это время точкой относительно системы
Этот путь равен сумме путей
Из последних четырех равенств получаем:
Итак, для истинных времени и скоростей правило сложения скоростей классической механики остается в силе и никаких ограничений на величины скоростей при этом не накладывается.