Нет никакой возможности узнать, что произошло с отрезками на самом деле, если только заранее не иметь в своем распоряжении таких фигур (отрезков, углов и т. д.), про которые мы точно знаем, что они не меняются ни при каких внешних обстоятельствах. А это требует «аксиомы неизменности», говорит геометр и вводит её примерно так: геометрические объекты подчиняются только условиям
, налагаемым математиком, и не зависят ни от каких других внешних условий. Так если геометр говорит: дан отрезок длиной L, то это значит, что его длина никоим образом не изменится, как бы мы его не двигали и куда бы мы его не прикладывали. Если геометр говорит: дана сфера радиуса R с центром в точке O, то никто кроме математика уже не может переместить её центр в другую точку или изменить её радиус. Далее нам придется говорить только об этой аксиоме неизменности, поэтому мы будем её называть просто Аксиома (и писать её с большой буквы ввиду её важности). Аксиома эта настолько прочно вжилась в наше сознание, что мы никогда почти её вслух не проговариваем, но всегда подразумеваем, что она действует. Традиционная математика, в которой действуют знаки: <, >, =, +, -, и т. д., покоится именно на этой Аксиоме. Следует также заметить, что в ситуации с двумя отрезками геометры применили принцип относительности, взятый ими из законов природы, и применили его весьма корректно (и эта корректность привела их к Аксиоме).Только теперь геометр начинает говорить об измерении. Он вводит определение: измерить отрезок L
с помощью единичного отрезка se, это значит определить одно из двух выражений:
Или
Здесь n
– число равных частей, на которые поделена единица se, а m, m1, m2 – число таких частей в выражениях (2. 1) и (2. 2). Если имеет место выражение (2. 1), то геометр говорит, что единица se и отрезок L – соизмеримы. Если L не удается представить в виде (2. 1), а удается представить только в виде (2. 2), то геометр говорит, что единица se и отрезок L – не соизмеримы.Таким образом, понятие «измерение» пришло в физику от математиков. Физик в своих измерениях всегда только копирует действия математика и его понятие измерения ничем не отличается от понятия измерения математика. Разница лишь в том, что у физика всегда имеется только выражение (2. 2) (что связано со степенью точности измерения), но это не меняет сути дела.
2. 4. Аксиома неизменности и преобразования Лоренца
А теперь допустим, что геометру говорят: ваша единица длины s
e может меняться в зависимости от того, как на неё посмотрит наблюдатель или от того как она двигается и т. д. Тогда геометр скажет: « В таком случае я не могу сказать, что я что-то измерил; понятие измерения теперь потеряло смысл». И он будет прав (Аксиома не работает). Но тогда и физик должен сказать то же, что и геометр (если физик последователен): я тоже не могу сказать, что я что-то измерил; понятие измерения потеряло смысл.А когда Аксиома перестает действовать? А тогда, когда начинают выводить преобразования Лоренца [2, с. 366]. Здесь один геометрический объект – сфера, в центре которой находится источник света (система координат OXYZ
), при появлении (всего лишь) наблюдателя превращается в другую – сферу, в центре которой теперь уже находится наблюдатель (система OIXIYIZI). Пока наблюдателя не было, уравнение сферы было таково:
Радиус этой сферы равен ct,
а центр сферы находится в точке O, то есть там же, где находится и источник света. И это соответствует физической ситуации. Но вот появляется наблюдатель (со своей системой координат OIXIYIZI) и согласно преобразованиям Лоренца уравнение сферы становятся таковым:
Но сфера (2. 4) это уже совсем другая сфера, нежели сфера (2. 3). Во-первых, радиус сферы (2. 3) не равен радиусу сферы (2. 4), потому, что в преобразованиях Лоренца t
не равно tI. Во-вторых, в центре сферы (2. 4) находится теперь уже не источник света, а наблюдатель (точка OI), источник света как оставался в точке O (центр сферы (2. 3)), так и остается в ней. Сфера (2. 3) реально существующая, таинственным образом преобразовалась в другую, не равную самой себе сферу (2. 4), только потому, что изволил появиться наблюдатель. Все это означает, что преобразования Лоренца отменяют Аксиому (она уже не действует).Последовательный физик должен сказать: «Мы вывели преобразования Лоренца, но теперь измерения потеряли смысл». Но последних четырех слов сторонники теории относительности почему-то никогда не говорят. Возможно, они думают, что при измерениях они не копируют действия математика, а действуют как-то гораздо умнее. Но как? Они это не объясняют. И весьма сомнительно, что они это когда-нибудь объяснят.