Пример 1. Прямолинейное равноускоренное движение. Пусть
находим
Но мы, однако, принимаем во внимание только решение с плюсом:
Но почему? Ведь отрицательное решение вовсе не противоречит математическому аппарату. Мы отбрасываем решение с минусом потому, что здесь мы пока ещё помним о том, что математический аппарат может одинаково безупречно описывать как то, что происходит, так и то, что не происходит в реальном мире. Не существует экспериментов, где время движения точки оказалось бы отрицательным.
Пример 2. Дифференциальные уравнения. Как известно, любое дифференциальное уравнение дает бесконечное множество решений. И только некоторые из этих решений описывают то, что происходит на самом деле. Подавляющая часть этих решений не имеет никакого отношения к описанию реального положения дел. Почему нас это не удивляет? Да потому, что и здесь мы пока ещё помним, что математический аппарат безупречно может описывать как то, что происходит, так и то, что не происходит. Чтобы решение описывало то, что происходит, нужно задать «правильные», реально существующие начальные и граничные условия, а это дело можно поручить только физику. Почему? Потому, что только физик имеет дело с первоначальными, реальными измерениями физических величин, и уж он-то знает, каковы эти величины бывают на самом деле. Если, например, поручить это дело математику, то он может задать «несбыточные» начальные и граничные условия. А потому и решение дифференциального уравнения будет описывать «несбыточные» процессы. Но очень часто даже физик имеет весьма туманное представление о начальных и граничных условиях, а тогда, дифференциальное уравнение становится совершенно бесполезной вещью.
Пример 3. Производная координаты по времени и дифференциал времени. Пусть
.
Но что означает символ
В математическом анализе это означает, что
.
Математический аппарат обязательно требует, чтобы
не имеет места, ни в каких опытах, и поэтому
Таким образом, когда физик смотрит, например, на уравнение
,
то он отчетливо должен понимать, что в эту одну формулу математический аппарат совершенно безупречно вложил два решения:
1-ое, когда
и оно (и только оно) реализуется в опытах.
2-ое, когда
и оно никогда не реализуется в опытах.
Аналогичная ситуация возникает, когда мы говорим о числе произошедших событий
Таким образом, если некто смотрит на формулу
и забывает о сказанном выше, у него возникают мысли о возможности создания машины времени
Именно математический аппарат провоцирует человека (очарованного этим аппаратом) на создание машины времени. И наоборот, никакие реальные опыты не дают нам оснований говорить об обратном течении времени. В вопросе о машине времени математический аппарат сыграл «злую шутку» с естествоиспытателем. Ниже мы увидим, что такие «шутки» математический аппарат проделывает постоянно.