Вот какое сложное сооружение — молекула дезоксирибонуклеиновой кислоты! Но почему каждая такая конструкция несет свою особую информацию? Чем конкретно отличается информация одной хромосомы от информации другой и что такое, наконец, сама эта информация? О чем она?
Все эти вопросы волновали биологов многих поколений. Ведь ДНК известна с 1869 года, когда Ф. Мишер впервые выделил из клеточных ядер вещество со свойствами кислоты и назвал его нуклеином. Уже в то время знали, что нуклеин содержит азот (вспомните наши азотистые основания) и фосфор (фосфатные остатки), но никому из современников Мишера и в голову не приходило связывать это вещество с наследственностью, поскольку в то время даже о роли ядра в передаче наследственных свойств не было речи.
Какой гигантский путь прошла наука о клетке с момента открытия нуклеиновой кислоты в ядрах клеток в 1869 году и до сегодняшнего дня, когда пишутся эти строки и когда каждый школьник из учебника знает, что наследственная информация закодирована в структуре ДНК с помощью определенной последовательности азотистых оснований: три рядом расположенных основания определяют одну аминокислоту!
Итак, тайна могущества наших «министерств» начинает проясняться:
Мы уже говорили, что основная масса клетки состоит из белков, а потому во всех клетках идет синтез белков, причем в одних — непрерывно, а в других — только на протяжении определенной части жизненного цикла. Несмотря на огромные различия в свойствах, все белки состоят из относительно простых молекул 20 аминокислот, и, следовательно, синтез белка сводится в конечном итоге к соединению отдельных аминокислот в длинные цепи.
Как мы видим, в синтезе белка действительно много общего с обычным городским строительством: конструкция (белок) собирается только из простых кирпичиков (аминокислот) по определенному плану (триплетный генетический код ДНК — три рядом расположенных азотистых основания кодируют одну из 20 аминокислот), который известен главному архитектору.
Как же соединяются аминокислоты друг с другом? Оказывается, универсальным цементирующим раствором является так называемая пептидная связь, при помощи которой карбоксильная группа (СООН) одной аминокислоты соединяется с аминогруппой (NH2) другой аминокислоты. Таким именно путем «собраны» все белковые агрегаты нашего города-государства.
Однако аналогии и на этом не заканчиваются. Дело в том, что на обычной стройке совершенно недостаточно иметь только кирпичи, цементирующий раствор и план строительства. Всем понятно, что без энергии строителей само по себе ничего не выстроится. Точно так же и в клетке. Пептидные связи не возникают сами по себе, если просто смешать разные аминокислоты. Синтезирующие системы клетки должны активно и энергично эти связи создать, и они их действительно создают.
Химизм этого процесса изучен сейчас достаточно подробно. На первом этапе происходит активация карбоксильных групп аминокислот с помощью… АТФ. Вот куда идет энергия, накопленная в клетке за счет разнообразных энергетических превращений. Мы подозревали, что АТФ будет играть важную роль в различных видах внутриклеточной деятельности, теперь мы видим эту роль воочию.
Итак, АТФ активирует карбоксильную группу аминокислот с помощью двух своих фосфатных групп из трех. Оставшийся после этого фрагмент — аденозинмонофосфат (АМФ) присоединяется к кислотной группе аминокислоты, и она становится способной образовывать пептидные связи. Кирпичики будущего белкового сооружения готовы к сборке.
Но теперь снова встает вопрос о плане строительства, вернее, не о нем самом, а о путях и способах его реализации. Мы оставили молекулу ДНК плавающей в ядерном соке, после того как выяснили, каким образом она заключает в себе план строительства — наследственную информацию. Теперь, когда АТФ активизировала кирпичики-аминокислоты и сборка белковых конструкций вот-вот начнется, необходимо выяснить, как план строительства станет известен на месте сборки, кто и как доставит его из ядра, от соответствующего «министра» к местам строительства.
О самом белке и способах его синтеза мы будем подробно говорить дальше. Но уже сейчас стоит заметить, что белок — основа всего, что есть в городе-государстве. Роль его в жизни клетки можно сравнить разве что с ролью металла в жизни механизма или машины. И хотя без энергии любой металлический станок — груда лома, но и без металлического тела нет машины, нет механизма.