Читаем Размышления о думающих машинах. Тьюринг. Компьютерное исчисление полностью

В статье «Умные машины», одной из первых в мире работ по искусственному интеллекту, Алан Тьюринг использовал вентили И-НЕ для симуляции нейронных цепей, которые назвал нейронными цепями типа В.

Нейронная сеть, изображенная Сантьяго Рамон-и-Кахалем (слева), и искусственная нейронная сеть (справа).

Эти волокна определяют конфигурацию нейронов: возбужденное состояние или нейтральное. В возбужденном состоянии, когда волокно Р активно, если модификатор связи получает на входе input 0 или 1, на выходе output будет возвращен тот же результат, 0 или 1 соответственно. С другой стороны, в нейтральном состоянии, когда волокно I активно, модификатор соединения будет вести себя так, что при любой величине на входе input, на выходе output результат всегда будет 1.

Кроме этих модификаторов, модель искусственного нейрона предполагала, что каждый нейрон имел два входа: ВХОД 1 и ВХОД 2 — и один ВЫХОД. Если оба входа находились в возбужденном состоянии, величина на ВЫХОДЕ получалась с применением булева оператора И-НЕ (вентиль И, выход которого соединяется с вентилем НЕ).

ВХОД 1

ВХОД 2

выход

0

0

1

0

1

1

1

0

1

1

1

0

Напротив, если ВХОД 1 находился в неактивном состоянии, величина на ВЫХОДЕ была равна обратной величине на ВХОДЕ 2, то есть 1, когда на ВХОДЕ 2 было 0 и наоборот.

ВХОД 1

ВХОД 2

выход

0

0

1

0

1

0

1

0

1

1

1

0

Если мы сравним модель искусственного нейрона Тьюринга с моделью Маккалока — Питтса, то увидим, что в последней величина на ВЫХОДЕ рассчитывается с заменой модификатора соединения на величину коэффициента w, который отражает синаптическую пластичность нейронов, то есть лучшую или худшую проходимость сигнала от одного нейрона к другому через синаптическую связь. Согласно формальной модели Маккалока — Питтса, нейрон ведет себя как калькулятор, способный вычислять сумму входных сигналов. Умножим каждый сигнал или ВХОД i на соответствующий коэффициент wi, сумму всех сигналов обозначим как ИТОГ:

ИТОГ = wi ВХОДi

После выполнения данной операции нейрон «решает», достаточна ли полученная информация ИТОГ для активации, или возбуждения. В самой элементарной модели нейрона величина ВЫХОДА получается с помощью ступенчатой функции:

1 ИТОГ >= U

ВЫХОД =

0 ИТОГ = U

При этом величина порога U устанавливается предварительно. Обратим внимание, что эта величина показывает чувствительность нейрона к внешнему стимулу: нейрон более чувствителен, чем ближе к нулю величина , так как чем меньше порог, тем вероятнее, что ИТОГ превзойдет его величину при возбуждении нейрона. Если величина на ВЫХОДЕ равна нулю, нейрон останется в состоянии покоя, если на ВЫХОДЕ будет некоторая величина, нейрон перейдет в возбужденное состояние. При возбуждении нейрон отправляет ответ, величину 1, следующему нейрону, для которого это будет величина на ВХОДЕ. В других случаях величина 1 в комбинации с величинами на ВЫХОДЕ от других нейронов, например 1001, будет ответом нейронной сети на входящий сигнал.

ТЕСТ ТЬЮРИНГА

Тьюринг исследовал вопрос, как определить, разумно ли ведет себя машина (компьютер). Ученый очень изящно избежал необходимости дать определение разуму и принял следующую точку зрения: хотя машина не разумна в том смысле, в каком это относится к человеку, ее поведение может быть разумным.

Такая форма рассмотрения вопроса сегодня называется поведенческим подходом. Например, нам известно, что программы для игры в шахматы не являются разумными, но при игре они ведут себя так, будто они разумны. При этом Алан Тьюринг не дал определения разума и не ответил на вопрос, могут ли машины мыслить. На основе этих идей Тьюринг придумал испытание, известное как тест Тьюринга, состоящее в том, что машину, компьютер или программу, разумное поведение которой нужно оценить, подвергают следующей процедуре. Представим себе человека, у которого есть монитор и клавиатура. С их помощью он может задавать вопросы компьютеру, находящемуся в другой комнате. Ответ высвечивается на экране его монитора. Например, человек печатает на английском языке с помощью клавиатуры последнюю фразу, сказанную компьютером HAL-9000 в фильме «2001 год: Космическая одиссея»:

Daisy, Daisy у

give те your answer true.

Гт half crazy

over the love of you

It won’t be a stylish marriage

I can't afford a carnage...

Он запрашивает у компьютера перевод на русский и получает ответ:

Дейзи, Дейзи,

Дай мне свой правдивый ответ.

Я наполовину сошел с ума

от любви к тебе.

Это не будет стильная свадьба,

Я не могу позволить себе карету...

КАПЧА

Перейти на страницу:

Похожие книги

Прикладные аспекты аварийных выбросов в атмосферу
Прикладные аспекты аварийных выбросов в атмосферу

Книга посвящена проблемам загрязнения окружающей среды при авариях промышленных предприятий и объектов разного профиля и имеет, в основном, обзорный справочный характер.Изучается динамика аварийных турбулентных выбросов при наличии атмосферной диффузии, характер расширения турбулентных струйных потоков, их сопротивление в сносящем ветре, эволюция выбросов в реальной атмосфере при наличии инверсионных задерживающих слоев.Классифицируются и анализируются возможные аварии с выбросами в атмосферу загрязняющих и токсичных веществ в газообразной, жидкой или твердой фазах, приводятся факторы аварийных рисков.Рассмотрены аварии, связанные с выбросами токсикантов в атмосферу, описаны математические модели аварийных выбросов. Показано, что все многообразие антропогенных источников загрязнения атмосферного воздуха при авариях условно может быть разбито на отдельные классы по типу возникших выбросов и характеру движения их вещества. В качестве источников загрязнений рассмотрены пожары, взрывы и токсичные выбросы. Эти источники в зависимости от специфики подачи рабочего тела в окружающее пространство формируют атмосферные выбросы в виде выпадающих на поверхность земли твердых или жидких частиц, струй, терминов и клубов, разлитий, испарительных объемов и тепловых колонок. Рассмотрены экологические опасности выбросов при авариях и в быту.Книга содержит большой иллюстративный материал в виде таблиц, графиков, рисунков и фотографий, который помогает читателю разобраться в обсуждаемых вопросах. Она адресована широкому кругу людей, чей род деятельности связан преимущественно с природоохранной тематикой: инженерам, научным работникам, учащимся и всем тем, кто интересуется экологической и природозащитной тематикой.

Вадим Иванович Романов

Математика / Экология / Прочая справочная литература / Образование и наука / Словари и Энциклопедии
Значимые фигуры. Жизнь и открытия великих математиков
Значимые фигуры. Жизнь и открытия великих математиков

Несмотря на загадочное происхождение отдельных своих элементов, математика не рождается в вакууме: ее создают люди. Некоторые из этих людей демонстрируют поразительную оригинальность и ясность ума. Именно им мы обязаны великими прорывными открытиями, именно их называем пионерами, первопроходцами, значимыми фигурами математики. Иэн Стюарт описывает открытия и раскрывает перед нами судьбы 25 величайших математиков в истории – от Архимеда до Уильяма Тёрстона. Каждый из этих потрясающих людей из разных уголков мира внес решающий вклад в развитие своей области математики. Эти живые рассказы, увлекательные каждый в отдельности, складываются в захватывающую историю развития математики.

Иэн Стюарт , Йэн Стюарт

Биографии и Мемуары / Математика / Образование и наука