Читаем Разработка ядра Linux полностью

init_rwsem(struct rw_semaphore *sem);

Все семафоры чтения-записи являются взаимоисключающими (mutex), т.е. их счетчик использования равен единице. Любое количество потоков чтения может одновременно удерживать блокировку чтения, если при этом нет ни одного потока записи. И наоборот, только один поток записи может удерживать блокировку, захваченную на запись, если нет ни одного потока чтения. Все семафоры чтения-записи используют непрерываемое состояние ожидания, поэтому существует только одна версия функции down(). Рассмотрим следующий пример.

static DECLARE_RWSEM(mr_rwsem);

/* попытка захватить семафор для чтения */

down_read(&mr_rwsem);

/* критический участок (только чтение) ... */

/* освобождаем семафор */

up_read(&mr_rwsem);

/* ... * /

/* попытка захватить семафор на запись */

down_write(&mr_rwsem);

/* освобождаем семафор */

/* критический участок (чтение и запись) ... */

up write(&mr_rwsem);

Для семафоров есть реализации функций down_read_trylock() и down_write_trylock(). Каждая из них принимает один параметр — указатель на семафор чтения-записи. Обе функции возвращают ненулевое значение, если блокировка захвачена успешно, и нуль, если блокировка находится в состоянии конфликта. Следует быть внимательными — поведение этих функций противоположно поведению аналогичных функций для обычных семафоров, причем без всякой на то причины!

Семафоры чтения-записи имеют уникальную функцию, аналога которой нет для спин-блокировок чтения-записи. Это функция downgrade_writer(), которая автоматически превращает блокировку, захваченную на запись, в блокировку, захваченную на чтение.

Семафоры чтения-записи, так же как и спин-блокировки аналогичного типа, должны использоваться, только если есть четкое разделение между участками кода, которые осуществляют чтение, и участками кода, которые осуществляют запись. Использование механизмов блокировок чтения-записи приводит к дополнительным затратам, поэтому их стоит использовать, только если код можно четко разделить на участки чтения и записи.

<p>Сравнение спин-блокировок и семафоров</p>

Понимание того, когда использовать спин-блокировки, а когда семафоры является важным для написания оптимального кода. Однако во многих случаях выбирать очень просто. В контексте прерывания могут использоваться только спин-блокировки, и только семафор может удерживаться процессом, который находится в состоянии ожидания. В табл. 9.6 показан обзор требований того, какой тип блокировок использовать.

Таблица 9.6. Что следует использовать: семафоры или спин-блокировки

ТребованиеРекомендуемый тип блокировки
Блокировка с малыми накладными затратами (low overhead)Спин-блокировки более предпочтительны
Малое время удержания блокировкиСпин-блокировки более предпочтительны
Длительное время удержания блокировкиСемафоры более предпочтительны
Необходимо использовать блокировку в контексте прерыванияНеобходима спин-блокировка
Необходимо переходить в состояние ожидания (steep) при захваченной блокировкеНеобходимо использовать семафоры
<p>Условные переменные</p>

Условные переменные (conditional variable, completion variable) — простое средство синхронизации между двумя заданиями, которые работают в режиме ядра, когда необходимо, чтобы одно задание послало сигнал другому о том, что произошло некоторое событие. При этом одно задание ожидает на условной переменной, пока другое задание не выполнит некоторую работу. Когда другое задание завершит выполнение своей работы, оно использует условную переменную для того, чтобы возвратить к выполнению все ожидающие на ней задания. Если это кажется похожим на работу семафора, то именно так оно и есть, идея та же. В действительности, условные переменные просто обеспечивают простое решение проблемы, для которой в других ситуациях используются семафоры. Например, в системном вызове vfork() условная переменная используется для возврата к выполнению родительского процесса при завершении порожденного.

Условные переменные представляются с помощью структуры struct completion, которая определена в файле .

Перейти на страницу:

Похожие книги

C++: базовый курс
C++: базовый курс

В этой книге описаны все основные средства языка С++ - от элементарных понятий до супервозможностей. После рассмотрения основ программирования на C++ (переменных, операторов, инструкций управления, функций, классов и объектов) читатель освоит такие более сложные средства языка, как механизм обработки исключительных ситуаций (исключений), шаблоны, пространства имен, динамическая идентификация типов, стандартная библиотека шаблонов (STL), а также познакомится с расширенным набором ключевых слов, используемым в .NET-программировании. Автор справочника - общепризнанный авторитет в области программирования на языках C и C++, Java и C# - включил в текст своей книги и советы программистам, которые позволят повысить эффективность их работы. Книга рассчитана на широкий круг читателей, желающих изучить язык программирования С++.

Герберт Шилдт

Программирование, программы, базы данных