Читаем Разум, машины и математика. Искусственный интеллект и его задачи полностью

ИНФОРМАЦИОННОЕ ДЕРЕВО

Дерево — это структура данных, которая очень широко используется в инженерном деле, так как позволяет строить иерархии данных. При работе с деревьями используются особые понятия.

Данные, представленные в дереве, называются узлами. Эти узлы, представляющие единицы информации, делятся на разные уровни и связываются между собой ветвями. Узел, связанный с узлом более высокого уровня, называется потомком, узел, связанный с узлом низшего уровня, — родителем. Узлы, не имеющие потомков, называются листьями.

* * *

В этом случае посещаемость не является определяющей переменной, поэтому не представлена в виде узла дерева. Существуют различные методологии, позволяющие определить, является ли переменная модели дискриминантной (иными словами, можно ли разделить выборку на группы в зависимости от значений этой переменной). В основе одной из самых популярных методологий лежит понятие энтропии Шеннона. В рамках этой методологии для каждого уровня дерева определяется переменная, порождающая меньше всего энтропии. Именно эта переменная и будет дискриминантной для рассматриваемого уровня. Рассмотрим метод подробнее.

Энтропия Шеннона S рассчитывается по следующей формуле:

Попробуем применить это понятие в нашей задаче об экзаменах. На первом уровне дерева необходимо проанализировать энтропию, порождаемую каждой переменной. Первая переменная — «оценка за предыдущий предмет». Если мы разделим выборки в зависимости от значений этой переменной, получим два подмножества выборок. Для первого подмножества энтропия Шеннона будет равна

SОценка за предыдущий предмет ниже средней = -0,75log(0,75)0,25log(0,25) = 0,56,

так как среди студентов, которые в прошлом году получили оценку ниже средней, не сдали экзамен 75 %, сдали — 25 %. Для второго множества энтропия Шеннона будет равна

SОценка за предыдущий предмет ниже средней = -0,33log(0,33) 0,67log(0,67) = 0,64,

так как треть студентов, которые в прошлом году получили оценку выше средней, не сдали экзамен, две трети студентов — сдали.

Подобные расчеты повторяются для каждой переменной. Следующая переменная — «посещаемость». Для простоты установим граничное значение посещаемости, равное 95 %. В этом случае

SПосещаемость выше 95 % = -0,6log (0,6)0,4log(0,4)0,67;

SПосещаемость выше 95 % = -0,5log (0,5)0,5log(0,5)0,69

Наконец, рассмотрим переменную «сданные задания» и вновь для простоты разобъем выборку на 2 группы, выделив тех, кто сдал больше и меньше 60 % заданий.

Имеем:

SСдано более 60 % заданий -0,75log(0,75)0,25log(0,25) = 0,56;

и

SСдано более 60 % заданий = -1log(1) = 0

Следовательно, наилучшей дискриминантной переменной будет последняя, так как энтропия подмножеств, выделенных на ее основе, равна 0,56 и 0.

В этом случае все представители обучающей выборки, сдавшие менее 60 % заданий, не сдали экзамен, следовательно, эту ветвь дерева можно не рассматривать.

Но другая ветвь содержит одинаковое число студентов, сдавших и не сдавших экзамен. Следовательно, необходимо продолжить анализ, не учитывая уже дискриминированные выборки.

Теперь остались только две переменные, которые могут повлиять на итоговое решение: «оценка за предыдущий предмет» и «посещаемость». Значения энтропии Шеннона для групп, выделенных в зависимости от значений первой дискриминантной переменной, таковы:

SОценка за предыдущий предмет ниже средней = -0,5log (0,5)0,5log (0,5) = 0,69;

SОценка за предыдущий предмет ниже средней -1log(1) = 0

Если мы рассмотрим переменную «посещаемость»,

SПосещаемость выше 95 % = -0,33log (0,33)0,67log (0,67) = 0,64;

SПосещаемость выше 95 % -1log(1) = 0

В качестве дискриминантной переменной мы выберем «посещаемость», так как для нее характерна меньшая энтропия.

Метод построения деревьев принятия решений и, следовательно, метод обучения деревьев прост и элегантен, однако обладает двумя значительными недостатками.

Перейти на страницу:
Нет соединения с сервером, попробуйте зайти чуть позже