Читаем Разум, машины и математика. Искусственный интеллект и его задачи полностью

МОДЕЛЬ ЛОТКИ — ВОЛЬТЕРРЫ

Уравнения, описывающие пример с лисами и зайцами, могут значительно усложняться. Исследователь Альфред Джеймс Лотка описал, как изменятся эти уравнения, если мы будем учитывать колебания численности хищников и жертв с течением времени. Допустим, что D(t) и P(t) — численность хищников и жертв в момент времени t. В каждый момент времени рождается n и умирает m хищников. Следовательно, формула, описывающая изменение численности хищников с течением времени, записывается так: D(t + 1) = D (t) + nD(t) mD(t). Аналогично изменение численности жертв описывается уравнением: Р(t + 1) = Р(t) + n'Р(t) mV(t). Следует учесть, что рост числа жертв означает рост рождаемости хищников, что можно выразить, к примеру, с помощью постоянной r.

Число взаимодействий «жертва — хищник», как мы показали, равно cPD. Следовательно, новое уравнение, описывающее численность хищников, будет выглядеть так:

D(t+1) = D(t) + nD(t)mD(t) + r[cP(t)D(t)]

Изменение численности жертв будет происходит прямо противоположным образом: при любом взаимодействии «хищник — жертва» численность жертв будет сокращаться. Уравнение численности жертв будет иметь вид:

P(t+1) = P(t) + r[P(t)m'P(t)r[cP(t)D(t)].

Если теперь мы зафиксируем значения постоянных и будем решать эти уравнения для последовательных моментов времени, то увидим, что D(t) и P(t) будут колебаться, а хищники и жертвы будут последовательно переживать циклы изобилия и голода.

График, описывающий колебания численности зайцев и лис с течением времени согласно модели Лотки — Вольтерры.

Третье свойство: формирование потоков

Потоки возникают на всех уровнях сложных адаптивных систем, где присутствуют узлы, носители и переносимые ресурсы. Ограничимся двумя примерами сложных адаптивных систем. Первый — центральная нервная система живого организма, где узлами являются нейроны, носителями — соединяющие их синапсы, а переносимым ресурсом — электрические импульсы. Второй пример — потоки в экосистеме, где узлами являются виды, носителем — пищевая цепь, а переносимым ресурсом — энергия, представленная в виде биохимических элементов (потребляемого белка, сахара и так далее).

В общем случае узлы являются средствами обработки ресурса, а связи определяют взаимодействия между узлами. Следует учесть, что в сложной адаптивной системе сеть взаимодействий может меняться, а узлы и связи могут возникать и исчезать.

Эти особенности и обеспечивают адаптируемость системы к среде и позволяют ей корректировать свое поведение в зависимости от текущей ситуации.

Нанесение меток — один из самых важных механизмов сложных адаптивных систем для определения потоков: метки могут определять, какие связи играют важнейшую роль при переносе ресурсов.

Потоки обладают двумя свойствами, представляющими интерес при изучении работы сложных адаптивных систем. Первое свойство заключается в том, что потоки вносят в систему эффект мультипликатора. К примеру, в такой сложной адаптивной системе, как экономика страны, перенос денег от одного узла к другому (например, между банками) исполняет роль денежного мультипликатора. Второе интересное свойство — способность создания циклов с целью переработки. Обратите внимание, как на схеме нелинейно возрастает объем промышленного производства в сложной адаптивной системе — производственной цепочке изготовления автомобилей — при переработке и в ее отсутствие.

Перейти на страницу:
Нет соединения с сервером, попробуйте зайти чуть позже