Читаем Разум побеждает: Рассказывают ученые полностью

В настоящее время многие ученые заняты разработкой теоретических моделей различных объектов природы. Как следует относиться к подобным моделям и в какой степени, на ваш взгляд, может отвечать реальному положению вещей модель, например, однородной, изотропной Вселенной?

Построение теоретических моделей — реальный способ исследования природы. Каждая такая модель, если она построена на фактах и внутренне непротиворечива, отражает определенные стороны реального мира. Не следует только забывать, что модель еще не сам объект природы, а лишь его более или менее точное, но теоретическое построение.

Что же касается модели изотропной Вселенной, то данные современных астрономических наблюдений пока недостаточно определенны. Это не позволяет достаточно достоверно сравнивать более сложные модели с природными объектами и, следовательно, вьь носить окончательное суждение, в какой степени они реальны. При современном состоянии наших астрономических знаний простая однородная, изотропная модель представляется наилучшей. Но было бы слишком хорошо, если бы такое положение сохранялось всегда. Вряд ли можно сомневаться в том, что в действительности мир устроен гораздо сложнее. Ведь наши знания о нем всегда относительны. И поэтому можно не сомневаться, что со временем нам придется переходить ко все более сложным моделям, даже к таким, в которых рядом друг с другом могут сосуществовать различные миры, с разными свойствами.

Что представляют собой, с вашей точки зрения, законы природы и могут ли они количественно и качественно меняться со временем?

Объективные законы — это определенные правила, по которым природа движется, изменяется. Возможны ли их изменения? Если исходить из относительности наших знаний, то следует признать, что правы те физики, которые говорят: со временем в нашей области Вселенной происходит изменение констант — постоянных величин, входящих в формулы фундаментальных физических законов, например постоянной тяготения. Но это чисто количественные изменения.

А как все же быть с качественными? Можно ли в принципе допустить такую возможность, чтобы с течением времени изменился, скажем, сам характер, сама форма закона тяготения, а следовательно, и отображающая его математическая формула?

Тут на современном уровне познания возможны лишь весьма общие соображения. Если в природе, например, действительно существует сверхплотное состояние вещества — а после открытия реликтового радиоизлучения это представляется весьма правдоподобным, — то очевидно, что Метагалактика в отдаленные времена находилась в состоянии, к которому известные нам сейчас законы физики неприменимы.

Для современной физики это пока еще «темный лес». Но одно почти совершенно ясно: то было качественно совершенно особое состояние материи, иное, чем все известные нам сегодня. Поэтому есть основания предполагать, что и физические законы там могли иметь несколько иной или даже существенно иной характер. А если Метагалактика представляет собой пульсирующую систему и со временем теперешнее ее расширение сменится сжатием, то плотность вещества в ней вновь может возрасти настолько, что характер законов опять изменится.

Ну а что касается возможности изменения характера физических законов в нашей, так сказать, обычной Вселенной, вне каких-либо критических состояний, то пока в науке нет никаких фактов, которые бы ее подтверждали. Впрочем, и тут говорить с полной уверенностью, что известные нам законы природы не испытывают никаких изменений, тоже нельзя. Это уже было бы метафизикой. Слишком еще недостаточны наши знания о Вселенной.

Поскольку речь идет об объективных законах, возникает еще один вопрос: можно ли считать, что природе присущ некий «принцип экономии», что она «решает» свои задачи кратчайшим путем?

Я бы, скорее, сказал, что природа не терпит однообразия. Что же касается простоты, то в окружающем нас мире можно найти примеры и удивительно экономного «решения» задач и поразительной расточительности. Возьмем хотя бы генетический отбор, при котором прогресс достигается за счет перебора огромного количества возможностей и множества проб, реализуется лишь ничтожная их часть.

Перейти на страницу:

Похожие книги

100 великих научных открытий
100 великих научных открытий

Астрономия, физика, математика, химия, биология и медицина — 100 открытий, которые стали научными прорывами и изменили нашу жизнь. Патенты и изобретения — по-настоящему эпохальные научные перевороты. Величайшие медицинские открытия — пенициллин и инсулин, группы крови и резусфактор, ДНК и РНК. Фотосинтез, периодический закон химических элементов и другие биологические процессы. Открытия в физике — атмосферное давление, инфракрасное излучение и ультрафиолет. Астрономические знания о магнитном поле земли и законе всемирного тяготения, теории Большого взрыва и озоновых дырах. Математическая теорема Пифагора, неевклидова геометрия, иррациональные числа и другие самые невероятные научные открытия за всю историю человечества!

Дмитрий Самин , Коллектив авторов

Астрономия и Космос / Энциклопедии / Прочая научная литература / Образование и наука
Теория струн и скрытые измерения Вселенной
Теория струн и скрытые измерения Вселенной

Революционная теория струн утверждает, что мы живем в десятимерной Вселенной, но только четыре из этих измерений доступны человеческому восприятию. Если верить современным ученым, остальные шесть измерений свернуты в удивительную структуру, известную как многообразие Калаби-Яу. Легендарный математик Шинтан Яу, один из первооткрывателей этих поразительных пространств, утверждает, что геометрия не только является основой теории струн, но и лежит в самой природе нашей Вселенной.Читая эту книгу, вы вместе с авторами повторите захватывающий путь научного открытия: от безумной идеи до завершенной теории. Вас ждет увлекательное исследование, удивительное путешествие в скрытые измерения, определяющие то, что мы называем Вселенной, как в большом, так и в малом масштабе.

Стив Надис , Шинтан Яу , Яу Шинтан

Астрономия и Космос / Научная литература / Технические науки / Образование и наука