Можно несколько видоизменить приведенный вариант — использовать спутник с апогеем до 1 миллиона километров. При этом угловое разрешение увеличится в сто раз. И наконец, можно космический радиотелескоп вынести на удаление около 100 миллионов километров от Земли. Можно считать, что для такого радиотелескопа антенна уже отработана в процессе подготовки эксперимента по исследованию поверхности Венеры. Расстояние между зеркалами (база) интерферометра, видимо, достаточное. Но точность инструмента ограничивается влиянием неоднородностей космической среды. Это может затруднить обнаружение астроинженерных сооружений внеземных цивилизаций в космосе.
Размещение телескопов в космосе со столь большой базой открывает новые возможности. Если взять не два, а три радиотелескопа, разнесенные на большие расстояния, то становится возможным прямое измерение расстояний до объектов — источников радиоволн. Более того, при этом возможно получить объемное изображение данного объекта.
Если радиотелескопы использовать группами (не подключая их по схеме радиоинтерферометра), то достигается выигрыш за счет увеличения суммарной площади собирательного зеркала. Так, голландская система «Вестербарк» состоит из 12 зеркал, каждое диаметром по 25 метров. Они соответствующим образом расположены и соединены. Система этих зеркал вытянулась на полтора километра. Эта установка на длине волны 21 сантиметр имеет разрешение около 20 угловых секунд. Подобная американская система «VELA», которая начала работать в 1979 году, состоит из 25 радиотелескопов диаметром по 25 метров. Но они расположены в форме буквы Y. Вся площадка, занятая ими, имеет протяженность 47 километров. Разрешающая способность этой системы на длине волны 6 сантиметров составляет 0,3 секунды дуги. «Атлас неба» составлен по данным многолетних наблюдений на оптическом телескопе обсерватории Маунт-Паломар с разрешением в три раза меньше.
ЧАСТЬТРЕТЬЯ
СОЛНЕЧНАЯ СИСТЕМА
ПЛАНЕТЫ СОЛНЕЧНОЙ СИСТЕМЫ
Мы находимся на задворках нашей Галактики. Из нашего медвежьего угла очень трудно «пощупать» далекие планеты. Исследовать планеты другими, косвенными методами очень сложно. Они малы и находятся далеко. Поэтому на примере планет нашей системы проиллюстрируем, насколько сильно могут меняться условия, в которых мы ищем жизнь. Эти условия мы, прежде всего, будем рассматривать с точки зрения жизни. Хотя мы уже знаем, что на наших планетах полноценной жизни нет, проанализируем физико-химические условия на планетах Солнечной системы, с тем чтобы дать представление о том, насколько сильно эти условия могут меняться. Это в одной планетной системе. Что же можно ожидать от планет, которые находятся ближе к центру Галактики? Во Вселенной все может быть. Схема Солнечной планетной системы, расположение планет и их удаленность от центральной звезды — Солнца показаны на рисунке 9. Вся картина разделена на две части (левую и правую). В каждой части свой масштаб. Внизу рисунка показаны расстояния планет от Солнца. Масштаб — логарифмический. Это когда изменение в десять раз занимает одну десятую часть изменения в 100 раз. Но для удобства самая нижняя линия показывает удаление от Солнца в километрах, а линия выше — в астрономических единицах. Астрономическая единица — это расстояние от Земли до Солнца. Оно равно 149, 6 миллиона километров. В этих единицах в нижней части рисунка показаны удаления планет от Солнца (средние их удаления).
Все планеты движутся по эллиптическим орбитам. Эллипс — это овал. Он, в отличие от окружности, имеет два центра. Любая точка на эллипсе так расположена, что сумма ее расстояний от этих двух центров остается всегда постоянной.
Если эти два центра все больше и больше растягивать в разные стороны, то эллипс становится все более вытянутым. Если же, наоборот, центры эллипса сближать и затем вообще совместить друг с другом, то в конце концов получится окружность с одним центром и одним радиусом.