Для съемки Нептуна и Тритона было придумано два новых специальных режима. Один из них в обиходе назывался «кивком», а официально – Nodding Image Mode Compensation (NIMC). Аппарат набирал необходимую угловую скорость точно рассчитанным количеством коротких импульсов двигателями и следовал за целью очень небольшое время, по сути лишь в течение экспозиции, так что ось его антенны не успевала отклониться от направления на Землю более чем на 0,1° и мощность принимаемого сигнала почти не снижалась. Закончив экспозицию, аппарат немедленно возвращался в исходное для данной серии снимков положение, а камера перенаводилась на новую цель.
Вторым дополнительным режимом стала безманевренная компенсация – аппарат сохранял стабильную ориентацию, а слежение за целью возлагалось на приводы сканирующей платформы. Этот вариант, однако, применялся только для съемки широкоугольной камерой WAC и инфракрасным радиометром IRIS.
Как мы помним, при пролете Юпитера «Вояджер-2» находился в 6,2 а.е. от Земли, а с Ураном встретился на расстоянии 19,1 а.е. от родной планеты. Мощность поступающего на Землю сигнала снизилась десятикратно, а вот пропускная способность канала X-диапазона – лишь впятеро, от 115 200 бит/с у Юпитера до 21 600 бит/с у Урана, и всё благодаря доработке наземного комплекса. Но заметную часть бортовой «посылки» занимали данные с других приборов, и чем меньше была доступная скорость, тем большую долю в общем ресурсе они требовали. Поэтому увеличение времени передачи одного кадра ISS всего лишь в пять раз, с 48 до 240 секунд, досталось не даром, а лишь благодаря программному сжатию изображений на борту и переходу к блочному кодированию сигнала.
А теперь подумайте о передаче данных от Нептуна, где мощность доходящего до Земли сигнала снижается еще в два с лишним раза (для педантов: на 3,5 дБ), а в абсолютных единицах составляет всего 10–17
Вт. Доставка информации на Землю потребовала немалой технической изобретательности, а прием – серьезных вложений в инфраструктуру Сети дальней связи.Сдваивание и даже страивание приемных антенн, примененное для встречи с Ураном, не было достаточным для Нептуна. На расстоянии 29,6 а.е. от Земли это гарантировало прием информации на скорости лишь 9600 бит/с. Возможности борта по сокращению потока данных были исчерпаны, так что решение нужно было искать на Земле. На всех трех комплексах – в Калифорнии, в Австралии и в Испании – были реконструированы большие антенны с увеличением коэффициента усиления на 1,4 дБ. Зеркала антенн увеличили с 64 до 70 м в диаметре, а новая поверхность была собрана из панелей с отклонением формы от эталонной всего на 0,1 мм. Испанская антенна DSS-63 была готова в мае 1987 г., австралийская DSS-43 – в сентябре, а калифорнийская DSS-14 – в мае 1988 г.
В Испании, в Робледо-де-Чавела, в 1987 г. построили новую «высокоэффективную» 34-метровую антенну DSS-65, которой уже не хватало у Урана. Наконец, калифорнийскому комплексу должна была помочь уже упомянутая система радиотелескопов VLA. В течение четырех лет ее антенны дооснастили приемниками X-диапазона с малошумящими усилителями, охлаждаемыми жидким гелием, которые обошлись в 5,5 млн долларов, и аппаратурой обработки и передачи сигналов. Информация от VLA передавалась в Голдстоун по спутниковому каналу и там объединялась с основным потоком.
Сопряжение основной 70-метровой антенны с двумя 34-метровыми и со всей системой VLA утраивало собирающую площадь и добавляло 5,6 дБ к чувствительности старой 64-метровой антенны. Становился возможным прием информации от Нептуна со скоростью 14 400 бит/с при передаче снимков и остальной научной и инженерной телеметрии в реальном времени и даже 21 600 бит/с, если одновременно передавались и записанные на DTR изображения. Обеспечивало в теории – на практике это еще нужно было доказать.
Эксперименты начались на аппарате «Вояджер-1», который продолжал служить «летающим стендом» для своего знаменитого собрата. Так, в период с июля по октябрь 1987 г. на нем отрабатывался алгоритм «кивка» NIMC.
«Вояджер-2» стал участником комплексного эксперимента летом 1988 г. 8 июня в память компьютера FDS-B загрузили программу 09AB, содержащую основные алгоритмы навигации и управления для работы по Нептуну. 9 июня в память FDS-A заложили программу 180F с алгоритмами сжатия изображений, а 17 июня была инициирована работа борта в двухпроцессорном режиме с FDS-B в роли главного компьютера.