Читаем Разведка далеких планет полностью

Так что с развитием космонавтики использование Солнца и планет в качестве гравитационных линз может стать реальным. А пока мы не имеем возможности выносить наши детекторы далеко от Земли, нужно подбирать подходящую линзу, в фокусе которой мы случайно находимся, благо вокруг нас много звезд и галактик. Эффект гравитационной фокусировки обсуждается с середины 1920-х гг., начиная с работы петербургского физика Ореста Хвольсона. В отношении линзы-звезды особого оптимизма не было: рядом с яркой звездой трудно заметить изображение более далекого объекта. Другое дело – использовать в качестве линзы галактику, поверхностная яркость которой невелика, а гравитационный потенциал не меньше, чем на поверхности нормальной звезды.

Несколько лет продолжались поиски эффекта гравитационной фокусировки в мире галактик, прежде чем в конце 1978 г. эффект был обнаружен: астрономы заметили, что изображение далекого квазара QSO 0957+561 состоит из двух почти одинаковых частей, разделенных углом всего 6″. При этом они имеют одинаковые спектры с одинаковым красным смещением и «мигают» в унисон с временной задержкой один относительно другого 417 сут. Оказалось, что это два изображения одного квазара, созданные гравитационной линзой – более близкой к нам галактикой, изображение которой позже обнаружили. Галактика находится от нас на расстоянии 3,7 млрд св. лет (красное смещение z = 0,355), а квазар удален на 8,7 млрд св. лет (z= 1,41). Если бы галактика лежала точно на линии «квазар – Земля» и была сферически симметричной, то изображение квазара имело бы форму кольца (так называемое кольцо Эйнштейна). Но это не так, поэтому изображение, созданное гравитационной линзой, представляет собой несколько пятен. Позже были найдены тройные и даже четверные изображения квазаров («крест Эйнштейна»). Таким образом, принцип гравитационной фокусировки был доказан. Позже обнаружилось, что роль гравитационной линзы могут играть как целые скопления галактик, так и отдельные звезды, если их собственный блеск слабее яркости созданного ими изображения. До сих пор такие наблюдения проводились в оптическом и радиодиапазоне. В будущем нам нужно научиться использовать этот метод для усиления проницающей способности нейтринных и гравитационноволновых телескопов.

<p>Звезды-зонды</p>

Вначале главы я рассказывал, как покрытие диском Луны помогает изучить звезды. В том случае Луна была прибором, а звезды – объектом исследования. Однако и сами звезды могут стать частью астрономического прибора, предназначенного для исследования планеты. Метод покрытия уже несколько десятилетий весьма плодотворно применяется для того, чтобы излучением звезд «просвечивать» атмосферы планет и их окрестности.

Первый сенсационный результат этот метод дал в 1977 г., когда позволил обнаружить темные кольца Урана. Открытие сделал американский астроном Джеймс Эллиот с коллегами 10 марта 1977 г., наблюдая с борта летающей обсерватории «Койпер» (NASA) за тем, как Уран проходит перед звездой SAO 158687 в созвездии Весы. Вообще-то ученые хотели узнать что-нибудь новое об атмосфере Урана, сквозь которую на заходе и на восходе будет просвечивать звезда.

Рис. 5.11. Летающая обсерватория «Койпер» для инфракрасных наблюдений в стратосфере.

В передней части фюзеляжа находится окно для телескопа (темный прямоугольник).

Чтобы не пропустить явление, они начали свои наблюдения за час до рассчитанного момента и неожиданно заметили, как за полчаса до начала покрытия звезды диском планеты и совершенно симметрично после окончания ее покрытия блеск звезды пять раз на несколько секунд ослаб. Сразу стало ясно, что это указывает на существование пяти тонких полупрозрачных колец вокруг планеты, заслонивших от телескопа звездный свет. С Земли эти кольца до того дня никто не видел, поскольку, в отличие от колец Сатурна, кольца Урана состоят из очень темного вещества. Спустя полгода после открытия Джеймса Эллиота к планетам-гигантам стартовали межпланетные зонды «Вояджер-1» и «Вояджер-2». Когда 24 января 1986 г. «Вояджер-2» сблизился с Ураном, ученые уже были готовы к поиску колец и без труда обнаружили их на переданных снимках, а также открыли новые. Позже свою лепту внес и космический телескоп «Хаббл», так что сейчас уже известно 13 колец Урана.

Перейти на страницу:

Похожие книги

100 великих загадок астрономии
100 великих загадок астрономии

С той знаменитой январской ночи 1610 года, когда Галилей навёл свой телескоп на небо и открыл спутники Юпитера, многие учёные и энтузиасты последовали его примеру и открыли немало планет и звёзд, существование которых в настоящее время не подтверждается. И задолго до Галилея необъяснимые явления в космосе ставили в тупик мыслителей и будоражили умы обывателей. Сегодня – в XXI веке, несмотря на то, что современная наука продвинулась далеко вперёд, в астрономии накопилось множество открытий и наблюдений, которые требуют для своего объяснения новых теоретических построений. Все они, на первый взгляд, кажутся чрезвычайно сложными, но, учитывая опыт прошлого, ученые не спешат отступать.О самых волнующих загадках современной астрономии рассказывает очередная книга серии.

Александр Викторович Волков

Астрономия и Космос / Прочая научная литература / Образование и наука