Читаем Разведка далеких планет полностью

«Рассматриваемая планетная система принадлежит звезде Барнарда, красному карлику спектрального класса dM 5. Ван де Камп и другие астрономы вели тщательные наблюдения звезды Барнарда с 1916 по 1919 гг. и затем с 1938 г. по настоящее время. Согласно предложенной ван де Кампом динамической интерпретации отклонений собственного движения звезды Барнарда от прямолинейного, они обусловлены спутником с массой, близкой к массе Юпитера, обращающимся вокруг звезды по эксцентрической орбите. Период обращения равен 24 годам. В 1969 г. ван де Камп уточнил свои ранние результаты и предложил два новых варианта интерпретации. Первый аналогичен прежнему, но планета имеет орбиту с большим эксцентриситетом и больший период обращения. Во втором варианте предполагается существование двух планет на почти компланарных круговых орбитах. Направления их обращения совпадают. Ван де Камп нашел, что при массах планет, равных 1,1 и 0,8 массы Юпитера, и периодах 26 и 12 лет соответственно двухпланетная модель согласуется с наблюдательными данными не хуже, но и не лучше, чем однопланетная. Следует отметить, что ван де Камп искал лишь компланарные решения (т. е. лежащие в одной плоскости. – В. С.) и соответственно ограничил диапазон возможных параметров орбит.

Наш анализ движения звезды Барнарда показал, что для объяснения данных наблюдений необходимы по меньшей мере две планеты и что имеются убедительные свидетельства существования в системе трех массивных (М~1030 г) планет. Приближенные значения их масс 1,2; 0,6 и 0,8 массы Юпитера, а периоды обращения 26, 12 и 7 лет соответственно.

В настоящее время невозможно сделать окончательные выводы относительно параметров орбит или числа планет. В частности, если отклонение собственных движений от прямолинейности служит основным ориентиром при поисках планетных систем, то это исключает обнаружение планет „земного типа“. Несмотря на неоднозначность интерпретации данной планетной системы, имеющаяся информация требует, чтобы планеты в системе звезды Барнарда находились на некомпланарных орбитах; относительное наклонение орбит должно быть большим (i ≥ 40°). Именно эта особенность делает систему звезды Барнарда столь интересной».

Но не все астрономы согласились с выводами Питера ван де Кампа и его последователей. Продолжая наблюдения и увеличивая точность измерений, Дж. Гейтвуд с коллегами выяснили к 1973 г., что звезда Барнарда движется ровно, без колебаний, а значит, массивных планет в качестве спутников не имеет. Однако эти же астрометрические работы принесли в 1996 г. новую находку: были замечены зигзаги в движении шестой от Солнца звезды Лаланд 21185, удаленной от Солнца на 2,5 пк. (На ее волнообразное движение указывал еще П. ван де Камп в 1951 г.) По мнению Гейтвуда, вокруг этой звезды обращаются две планеты: одна с периодом 30 лет (масса 1,6 Mj, радиус орбиты 10 а. е.) и вторая с периодом 6 лет (0,9 Mj, 2,5 а. е.). Правда, это открытие до сих пор не только не подтверждено, но и вызывает все большие сомнения.

Первое надежное астрометрическое обнаружение экзопланеты состоялось лишь в 2009 г. После 12 лет наблюдений с помощью 5-метрового Паломарского телескопа за 30 звездами американские астрономы Стивен Правдо и Стюарт Шаклан из Лаборатории реактивного движения (JPL, NASA) обнаружили планету у крохотной переменной звезды «ван Бисбрук 10» (VB 10) в двойной системе Глизе 752 (GJ 752). Звезда VB 10 – одна из самых маленьких в Галактике: это красный карлик спектрального класса М8, уступающий Солнцу в 12 раз по массе и в 10 раз по диаметру. А светимость этой звезды столь мала, что если заменить ею наше Солнце, то днем Земля была бы освещена как сейчас лунной ночью. Именно благодаря малой массе звезды планета VB 10Ь смогла «раскачать» ее до заметной амплитуды: с периодом около 272 суток положение звезды на небе колеблется на 0,006″ (тот факт, что это удалось измерить, – настоящий триумф наземной астрометрии). Сама планета-гигант обращается по орбите с большой полуосью 0,36 а. е. (как у Меркурия) и имеет массу 6,4 Mj, т. е. она легче своей звезды всего в 14 раз, а по размеру даже не уступает ей.

Планеты у нейтронных звезд

В конце 1980-х несколько групп астрономов в разных странах создали высокоточные оптические спектрометры и начали систематические измерения скоростей ближайших к Солнцу звезд. Эта работа специально была нацелена на поиск экзопланет и через несколько лет действительно увенчалась успехом (см. ниже). Но первыми открыли экзопланету не оптики, а радиоастрономы, причем не одну, а сразу целую планетную систему. Произошло это в ходе исследования радиопульсаров – быстро вращающихся нейтронных звезд, излучающих строго периодические радиоимпульсы. Поскольку пульсары – чрезвычайно стабильные источники, радиоастрономы могут применять к ним метод хронометража и выявлять таким образом их движение со скоростью порядка 1 сантиметра в секунду (!), а значит, обнаруживать рядом с ними планеты с массами в сотни раз меньше, чем у Юпитера.

Перейти на страницу:

Похожие книги

100 великих научных открытий
100 великих научных открытий

Астрономия, физика, математика, химия, биология и медицина — 100 открытий, которые стали научными прорывами и изменили нашу жизнь. Патенты и изобретения — по-настоящему эпохальные научные перевороты. Величайшие медицинские открытия — пенициллин и инсулин, группы крови и резусфактор, ДНК и РНК. Фотосинтез, периодический закон химических элементов и другие биологические процессы. Открытия в физике — атмосферное давление, инфракрасное излучение и ультрафиолет. Астрономические знания о магнитном поле земли и законе всемирного тяготения, теории Большого взрыва и озоновых дырах. Математическая теорема Пифагора, неевклидова геометрия, иррациональные числа и другие самые невероятные научные открытия за всю историю человечества!

Дмитрий Самин , Коллектив авторов

Астрономия и Космос / Энциклопедии / Прочая научная литература / Образование и наука
Теория струн и скрытые измерения Вселенной
Теория струн и скрытые измерения Вселенной

Революционная теория струн утверждает, что мы живем в десятимерной Вселенной, но только четыре из этих измерений доступны человеческому восприятию. Если верить современным ученым, остальные шесть измерений свернуты в удивительную структуру, известную как многообразие Калаби-Яу. Легендарный математик Шинтан Яу, один из первооткрывателей этих поразительных пространств, утверждает, что геометрия не только является основой теории струн, но и лежит в самой природе нашей Вселенной.Читая эту книгу, вы вместе с авторами повторите захватывающий путь научного открытия: от безумной идеи до завершенной теории. Вас ждет увлекательное исследование, удивительное путешествие в скрытые измерения, определяющие то, что мы называем Вселенной, как в большом, так и в малом масштабе.

Стив Надис , Шинтан Яу , Яу Шинтан

Астрономия и Космос / Научная литература / Технические науки / Образование и наука