Читаем Разведка далеких планет полностью

В прежние времена астрономические обсерватории сооружали, как правило, вблизи университетов, но затем стали располагать на вершинах гор – подальше от плотных слоев атмосферы и крупных городов. Радиообсерватории часто строят в глубоких долинах, со всех сторон закрытых горами от радиопомех искусственного происхождения.

Телескопы – очень тонкие и чувствительные инструменты. Для защиты от непогоды и перепадов температуры каждый стационарный телескоп помещают в специальное здание – астрономическую башню. Небольшие башни имеют прямоугольную форму с плоской раздвигающейся крышей, а башни крупных телескопов обычно делают круглыми, с полусферическим вращающимся куполом, в котором для наблюдений открывается узкая щель. Такой купол хорошо защищает телескоп от ветра во время работы. Это важно, поскольку ветер раскачивает телескоп и вызывает дрожание изображения. Вибрация почвы и здания башни также плохо влияет на качество изображений, поэтому телескоп монтируют на отдельном фундаменте, отделенном от фундамента башни. Места для строительства оптических обсерваторий подбирают очень тщательно. Обычно это вершина горы: чем выше, тем тоньше слой атмосферы, сквозь который приходится вести наблюдения. Воздух должен быть сухим и чистым, желательно безветренным. Вблизи не должно быть городов с их ярким ночным освещением и смогом. Некоторые обсерватории располагаются в экстремальных условиях (рис. 3.24), поэтому там находятся только специалисты, которые работают посменно. Другие обсерватории размещаются в «компромиссных» местах, благоприятных для наблюдений и при этом сравнительно легко доступных, с хорошим климатом. Там многие наблюдатели живут постоянно, с семьями.

Желательно, чтобы крупные обсерватории были равномерно распределены по поверхности Земли: в этом случае в любой момент можно наблюдать любой небесный объект как на северном, так и на южном небе. Однако исторически сложилось, что большинство обсерваторий расположено в Европе и Северной Америке, поэтому небо Северного полушария изучено лучше. В последние десятилетия крупные обсерватории стали сооружать в Южном полушарии (Чили, Южная Африка, Австралия), а также вблизи экватора (например, на Гавайях), откуда можно наблюдать как северное, так и южное небо.

Рис. 3.24. Высокогорная обсерватория «Сфинкс» в Швейцарских Альпах на высоте 3570 м. Здесь занимаются инфракрасными исследованиями атмосферы и Солнца. В башне находится 76-сантиметровый кассегреновский рефлектор.

Как правило, на обсерваториях устанавливают несколько инструментов разного «калибра» и различной специализации. С помощью пассажного инструмента определяют моменты прохождения звезд через меридиан и таким образом уточняют скорость вращения Земли.

Это необходимо для службы точного времени, сигналы которого передаются по радио. Меридианный круг позволяет измерять не только моменты, но и место пересечения звездой меридиана. Это необходимо для создания точных карт звездного неба. Такие фундаментальные работы обычно проводят в крупных государственных обсерваториях: Морской обсерватории США, Королевской Гринвичской обсерватории в Великобритании, Пулковской и Московской обсерваториях в России.

Большинство телескопов имеет возможность поворачиваться вокруг одной или двух осей. К первому типу относятся меридианный круг и пассажный инструмент. Это небольшие телескопы, поворачивающиеся вокруг горизонтальной оси в плоскости небесного меридиана, проходящей через точки севера, юга и зенита. Двигаясь с востока на запад, каждое светило дважды в сутки пересекает эту плоскость. При этом в поле зрения телескопа светило непрерывно перемещается. Задача астронома – зафиксировать момент и место пересечения светилом небесного меридиана. Раньше это делали визуально, теперь – при помощи электронных камер.

Перейти на страницу:

Похожие книги

100 великих научных открытий
100 великих научных открытий

Астрономия, физика, математика, химия, биология и медицина — 100 открытий, которые стали научными прорывами и изменили нашу жизнь. Патенты и изобретения — по-настоящему эпохальные научные перевороты. Величайшие медицинские открытия — пенициллин и инсулин, группы крови и резусфактор, ДНК и РНК. Фотосинтез, периодический закон химических элементов и другие биологические процессы. Открытия в физике — атмосферное давление, инфракрасное излучение и ультрафиолет. Астрономические знания о магнитном поле земли и законе всемирного тяготения, теории Большого взрыва и озоновых дырах. Математическая теорема Пифагора, неевклидова геометрия, иррациональные числа и другие самые невероятные научные открытия за всю историю человечества!

Дмитрий Самин , Коллектив авторов

Астрономия и Космос / Энциклопедии / Прочая научная литература / Образование и наука
Теория струн и скрытые измерения Вселенной
Теория струн и скрытые измерения Вселенной

Революционная теория струн утверждает, что мы живем в десятимерной Вселенной, но только четыре из этих измерений доступны человеческому восприятию. Если верить современным ученым, остальные шесть измерений свернуты в удивительную структуру, известную как многообразие Калаби-Яу. Легендарный математик Шинтан Яу, один из первооткрывателей этих поразительных пространств, утверждает, что геометрия не только является основой теории струн, но и лежит в самой природе нашей Вселенной.Читая эту книгу, вы вместе с авторами повторите захватывающий путь научного открытия: от безумной идеи до завершенной теории. Вас ждет увлекательное исследование, удивительное путешествие в скрытые измерения, определяющие то, что мы называем Вселенной, как в большом, так и в малом масштабе.

Стив Надис , Шинтан Яу , Яу Шинтан

Астрономия и Космос / Научная литература / Технические науки / Образование и наука