Читаем Разведка далеких планет полностью

Система адаптивной оптики – это автоматическая система, предназначенная для исправления в реальном времени атмосферных искажений изображения, построенного телескопом. Сейчас системы адаптивной оптики применяются в оптических и инфракрасных телескопах наземного базирования для увеличения четкости изображения. Они особенно необходимы также для работы астрономических интерферометров, используемых для измерения размеров звезд и поиска их близких спутников, особенно планет. Системы адаптивной оптики имеют и неастрономические приложения: например, когда требуется наблюдать форму искусственных спутников Земли с целью их опознания. Разработка систем адаптивной оптики началась в 1970-е гг. и приобрела особый размах в 1980-е гг. в связи с программой «звездных войн», включавшей разработку лазерного противоспутникового оружия наземного базирования. Первые штатные системы адаптивной оптики начали работать на крупных астрономических телескопах в районе 2000 г.

На первый взгляд кажется, что исправить атмосферное искажение изображений в принципе невозможно. Откуда мы знаем, каким было исходное изображение и как именно его испортила неоднородная атмосфера? Тем не менее это возможно! Давайте познакомимся с принципом работы этой удивительной системы. Это величайшее достижение оптической астрономии, и оно достойно подробного рассмотрения.

Атмосферные помехи. Идущие от космических источников лучи света, проходя сквозь неоднородную атмосферу Земли, испытывают сильные искажения. Например, волновой фронт света, приходящего от далекой звезды (которую можно считать бесконечно удаленной точкой), на внешней границе атмосферы имеет идеально плоскую форму, но пройдя сквозь турбулентную воздушную оболочку и достигнув поверхности Земли, он становится похож на волнующуюся морскую поверхность. Это приводит к тому, что изображение звезды превращается из «точки» в непрерывно дрожащую и бурлящую кляксу. При наблюдении невооруженным глазом мы воспринимаем это как быстрое мигание и дрожание звезд, а при наблюдении в телескоп вместо «точечной» звезды видим дрожащее и переливающееся пятно; изображения близких друг к другу звезд сливаются и становятся неразличимы по отдельности; протяженные объекты – Луна и Солнце, планеты, туманности и галактики – теряют резкость, у них становятся неразличимыми мелкие детали. Обычно на фотографиях, полученных телескопами, угловой размер мельчайших деталей равен 2–3″, на лучших обсерваториях он изредка составляет 0,5″. Следует иметь в виду, что при отсутствии атмосферных искажений телескоп с объективом диаметром в 1 м дает угловое разрешение около 0,1″, а с объективом в 5 м – 0,02″. Фактически такое высокое качество изображения у обычных наземных телескопов никогда не реализуется из-за искажающего влияния атмосферы.

Пассивный метод борьбы с атмосферными искажениями заключается в том, что обсерватории строят на вершинах гор, обычно на высоте 2–3 км, выбирая при этом места с наиболее прозрачной и спокойной атмосферой. Но строить обсерватории и работать на высоте более 4,5 км практически невозможно. Поэтому даже на самых лучших высокогорных обсерваториях большая часть атмосферы располагается все же выше телескопа и существенно портит изображения.

Роль астронома-наблюдателя. Вообще говоря, задачу «получить изображение лучше, чем позволяет атмосфера», в астрономии решают разными средствами. Исторически, в эпоху визуальных наблюдений в телескоп, астрономы научились внимательно ловить моменты хорошего изображения. В силу случайного характера атмосферных искажений в некоторые мгновения эти искажения на короткое время становятся незначительными, и в изображении проявляются мелкие детали. Наиболее опытные и настойчивые наблюдатели часами караулили эти моменты и смогли таким образом зарисовать очень тонкие детали поверхности Луны и планет, а также обнаружить и измерить очень тесные двойные звезды. Но крайняя необъективность этого метода ярко проявилась в истории с марсианскими каналами: одни наблюдатели их видели, другие – нет.

Перейти на страницу:

Похожие книги

100 великих научных открытий
100 великих научных открытий

Астрономия, физика, математика, химия, биология и медицина — 100 открытий, которые стали научными прорывами и изменили нашу жизнь. Патенты и изобретения — по-настоящему эпохальные научные перевороты. Величайшие медицинские открытия — пенициллин и инсулин, группы крови и резусфактор, ДНК и РНК. Фотосинтез, периодический закон химических элементов и другие биологические процессы. Открытия в физике — атмосферное давление, инфракрасное излучение и ультрафиолет. Астрономические знания о магнитном поле земли и законе всемирного тяготения, теории Большого взрыва и озоновых дырах. Математическая теорема Пифагора, неевклидова геометрия, иррациональные числа и другие самые невероятные научные открытия за всю историю человечества!

Дмитрий Самин , Коллектив авторов

Астрономия и Космос / Энциклопедии / Прочая научная литература / Образование и наука
Теория струн и скрытые измерения Вселенной
Теория струн и скрытые измерения Вселенной

Революционная теория струн утверждает, что мы живем в десятимерной Вселенной, но только четыре из этих измерений доступны человеческому восприятию. Если верить современным ученым, остальные шесть измерений свернуты в удивительную структуру, известную как многообразие Калаби-Яу. Легендарный математик Шинтан Яу, один из первооткрывателей этих поразительных пространств, утверждает, что геометрия не только является основой теории струн, но и лежит в самой природе нашей Вселенной.Читая эту книгу, вы вместе с авторами повторите захватывающий путь научного открытия: от безумной идеи до завершенной теории. Вас ждет увлекательное исследование, удивительное путешествие в скрытые измерения, определяющие то, что мы называем Вселенной, как в большом, так и в малом масштабе.

Стив Надис , Шинтан Яу , Яу Шинтан

Астрономия и Космос / Научная литература / Технические науки / Образование и наука