Читаем Разведка далеких планет полностью

Второй недостаток данного метода в том, что одно лунное покрытие – это всего лишь один «скан», дающий одномерное распределение яркости источника. Но если наблюдать несколько покрытий одного и того же источника, то можно получить набор одномерных профилей яркости с разными углами сканирования. Дело в том, что Луна движется очень сложно и никогда не повторяет в точности своего пути. По этому набору сканов несложно восстановить двумерную картину распределения яркости.

Покрытия Луной используются для исследований не только в оптическом диапазоне: чрезвычайно широкое применение в свое время нашел этот метод в рентгеновской астрономии, приборы которой поначалу обладали очень низким угловым разрешением. В 1963 г. рентгеновские детекторы имели угловое разрешение несколько градусов, поэтому московский астрофизик И. С. Шкловский предложил исследовать рентгеновский источник в созвездии Телец в то время, когда его постепенно закрывала Луна. Эксперимент был проведен: в результате источник отождествили с Крабовидной туманностью и определили его размер – около 1′, что было в сотни раз меньше разрешающей способности рентгеновского детектора.

Рис. 5.3. Кривые блеска звезды IRC+00233 на длинах волн 2 и 4 микрона в момент ее покрытия Луной. Крестики – данные наблюдений. Сплошная кривая – теоретическая модель для звезды углового размера 0,0045″. Колебания блеска вызваны эффектом дифракции света на краю лунного диска: чем меньше угловой размер звезды, тем сильнее дифракционные колебания блеска. Из работы Р. М. Harvey, A. Oldag (Техасский университет), 2007 г.

Особенно тесно рентгеновские источники расположены на небе в направлении галактического центра. К счастью, через этот район время от времени проходит Луна. В 1971 г. в ходе ракетного эксперимента удалось определить координаты близкого к галактическому центру рентгеновского источника GX3+1 с точностью 25″х1″. Рентгеновским телескопам такая точность стала доступна лишь в конце 1970-х гг.

А еще раньше, в 1950-е гг., аналогичная ситуация сложилась в радиоастрономии. В то время радиотелескопы в метровом диапазоне имели угловое разрешение около 10°. Поэтому радиоастрономы часто использовали методы лунных покрытий для определения точных координат источников. В наше время на радиоинтерферометрах достигнута фантастическая разрешающая способность – 0,0001″, но Луна по-прежнему остается в арсенале радиоастрономов. Например, в последние годы при наблюдении радиоизлучения межзвездных молекул метод лунных покрытий позволил детально исследовать ядро нашей Галактики.

Начиная с 1973 г. Луна стала выступать в новой роли: американский радиоастрономический спутник «Эксплорер-49», выйдя на окололунную орбиту, развернул 230-метровые антенны и приступил к исследованию низкочастотного радиоизлучения Солнца, Юпитера и других объектов, закрываясь с помощью Луны от радиошумов земного происхождения. Заметим, что при наблюдении с борта искусственных спутников Земли и Луны метод лунных покрытий удается распространить практически на все небо. Первый опыт работы в радиотени Луны оказался удачным, и теперь радиоастрономы готовятся к созданию постоянной обсерватории на обратной стороне Луны. Впрочем, я опасаюсь, что пока эта обсерватория будет создана, наши музыкальные радиостанции доберутся и до обратной стороны Луны.

Итак, Луна отлично исполняет роль заслонки. А на что еще она годится? В следующем разделе мы узнаем, что Луна – подходящая мишень для нейтрино; вполне вероятно, что скоро она будет использована в этом амплуа. А недавно у нее появилась еще одна роль: Луну можно использовать как зеркало. Мы не имеем в виду любительскую радиосвязь «через Луну», когда принимаются отраженные от нее радиоволны: это интересно, но не имеет отношения к планетам. Астрономы стали использовать Луну в роли зеркала следующим образом: во время лунных затмений на поверхность Луны попадает солнечный свет, прошедший сквозь земную атмосферу, затем он частично отражается от Луны, и астрономы на Земле могут его наблюдать. Яркость Луны во время затмения показывает, насколько прозрачна атмосфера Земли, велика ли в ней облачность; цвет лунной поверхности говорит о степени запыленности нашей атмосферы.

Перейти на страницу:

Похожие книги

100 великих загадок астрономии
100 великих загадок астрономии

С той знаменитой январской ночи 1610 года, когда Галилей навёл свой телескоп на небо и открыл спутники Юпитера, многие учёные и энтузиасты последовали его примеру и открыли немало планет и звёзд, существование которых в настоящее время не подтверждается. И задолго до Галилея необъяснимые явления в космосе ставили в тупик мыслителей и будоражили умы обывателей. Сегодня – в XXI веке, несмотря на то, что современная наука продвинулась далеко вперёд, в астрономии накопилось множество открытий и наблюдений, которые требуют для своего объяснения новых теоретических построений. Все они, на первый взгляд, кажутся чрезвычайно сложными, но, учитывая опыт прошлого, ученые не спешат отступать.О самых волнующих загадках современной астрономии рассказывает очередная книга серии.

Александр Викторович Волков

Астрономия и Космос / Прочая научная литература / Образование и наука