Читаем Разведка далеких планет полностью

По указанным причинам основная роль в поиске экзопланет, подобных Земле, отводится космическим инструментам. С декабря 2007 г. ведутся наблюдения на европейском спутнике COROT, телескоп которого диаметром 27 см имеет поле зрения около 3° и оснащен чувствительным фотометром. Поиск планет осуществляется методом прохождений. Обнаружено уже более дюжины «юпитеров» и даже одна планета, размер которой лишь на 70 % больше, чем у Земли. В 2009 г. на гелиоцентрическую орбиту выведен спутник «Кеплер» (NASA) с телескопом диаметром 95 см, способный непрерывно измерять блеск более 100 тыс. звезд в поле зрения 10°×10°. От него ждут массового обнаружения планет земного типа, но пока найдено лишь несколько «юпитеров» и один «нептун» (правда, в списке подозреваемых — сотни объектов).

<p><strong>Измерение положения звезды</strong></p>

Весьма перспективными считаются методы, в которых измеряется движение звезды, вызванное обращением вокруг нее планеты (табл. 6.3). В качестве примера вновь рассмотрим Солнечную систему. Сильнее всех на Солнце влияет массивный Юпитер: в первом приближении нашу планетную систему вообще можно рассматривать как двойную систему Солнце — Юпитер, компоненты которой разделены расстоянием 5,2 а. е. и обращаются с периодом около 12 лет вокруг общего центра масс. Поскольку Солнце примерно в 1000 массивнее Юпитера, оно во столько же раз ближе к центру масс. Значит, Солнце с периодом около 12 лет обращается по окружности радиусом 5,2 а. е./1000=0,0052 а. е., который лишь немногим больше радиуса самого Солнца. С расстояния а Кентавра (4,34 св. года = 275 000 а. е.) радиус этой окружности виден под углом 0,004". Это очень маленький угол: под таким углом мы видим толщину карандаша с расстояния в 360 км. Но астрономы умеют измерять столь малые углы и поэтому уже не сколько десятилетий ведут наблюдение за ближайшими звездами в надежде заметить их периодическое «покачивание», вызванное присутствием планет. В самое последнее время это удалось сделать с поверхности Земли, но перспективы астрометрического поиска экзопланет, безусловно, связаны с запуском специализированных спутников, способных измерять положения звезд с миллисекундной точностью.

Рис. 6.5. Взаимное движение звезды и планеты. Центр масс системы «звезда + планета» движется прямолинейно (пунктир). Звезда и планета обращаются вокруг центра масс по подобным орбитам в противофазе (вверху). Наблюдая звезду, можно заметить ее «покачивания», указывающие на присутствие планеты.

<p><strong>Измерение скорости звезды</strong></p>

Заметить периодические колебания звезды можно не только по изменению ее видимого положения на небе, но и по изменению расстояния до нее. Вновь рассмотрим систему Юпитер — Солнце, имеющую отношение масс 1:1 000. Поскольку Юпитер движется по орбите со скоростью 13 км/с, скорость движения Солнца по его собственной небольшой орбите вокруг центра масс системы составляет V=13 м/с. Для удаленного наблюдателя, расположенного в плоскости орбиты Юпитера, Солнце с периодом около 12 лет меняет свою скорость с амплитудой 13 м/с.

Для точного измерения скоростей звезд астрономы используют эффект Доплера. Он проявляется в том, что в спектре звезды, движущейся относительно земного наблюдателя, изменяется длина волны всех линий: если звезда приближается к Земле, линии смещаются к синему концу спектра, если удаляется — к красному. При нерелятивистских скоростях движения эффект Доплера чувствителен лишь к лучевой скорости звезды, т. е. к проекции полного вектора ее скорости на луч зрения наблюдателя (прямую, соединяющую наблюдателя со звездой). Поэтому скорость движения звезды, а значит, и масса планеты определяются с точностью до множителя cos α, где α — угол между плоскостью орбиты планеты и лучом зрения наблюдателя. Вместо точного значения массы планеты (M) доплеровский метод дает лишь нижнюю границу ее массы (M×cos α).

Обычно угол а неизвестен. Лишь в тех случаях, когда наблюдаются прохождения планеты по диску звезды, можно быть уверенным, что угол а близок к нулю. Но у доплеровского метода есть два важных преимущества: он работает на любых расстояниях (разумеется, если удается получить спектр), и его точность почти не зависит от расстояния. В табл. 6.3 показаны характерные значения доплеровской скорости и углового смещения Солнца под влиянием каждой из планет. Плутон здесь присутствует как прототип планет — карликов.

Перейти на страницу:

Похожие книги

Будущее человечества. Колонизация Марса, путешествия к звездам и обретение бессмертия
Будущее человечества. Колонизация Марса, путешествия к звездам и обретение бессмертия

Известный физик-теоретик, доктор философии и популяризатор науки дает собственный прогноз о нашем будущем. Автор этой книги уверен: совсем скоро людям придется покинуть родную планету и отправиться в космос. Потому что грядет глобальный кризис, несущий угрозу всему живому на Земле…По мнению Митио Каку, людям предстоит стать «двухпланетным видом», как когда-то метко выразился астрофизик Карл Саган. В этой книге ученый рассматривает проблемы, ждущие нас во время освоения космоса, а также возможные пути их решения.Вы узнаете, как планируется колонизировать Марс, что уже сделано для покорения этой планеты, прочтете о новейших достижениях в сфере строительства звездолетов. Ознакомитесь с прогнозом ученого о том, могут ли люди обрести бессмертие. Откроете, как в научном мире относятся к возможности существования внеземных цивилизаций. И вместе с автором поразмышляете над тем, что произойдет, когда человечество сможет выйти за пределы Вселенной…

Митио Каку , Мичио Каку

Астрономия и Космос / Педагогика / Образование и наука