Читаем Разведка далеких планет полностью

Как известно, звезды мерцают потому, что их свет проходит через неспокойные слои атмосферы. Теплые потоки воздуха поднимаются вверх, охлажденные стремятся вниз, они смешиваются друг другом, дробятся на ячейки с разной температурой и оптической плотностью. На границах этих ячеек происходит преломление света. В общем, такой процесс легко смоделировать, направив в стакан с кипятком струйку холодной воды либо наоборот. Попробуйте сами: поставьте стакан холодной воды на газету, плесните в него кипяток — и увидите, как будет выглядеть газетный текст сквозь воду, пока она полностью не перемешается. Глядя сквозь оптически неоднородную бурлящую атмосферу на далекие источники света (не только космические!), мы замечаем их мерцание в том диапазоне частот, который доступен нашему зрению, то есть не выше 20 Гц. Высокочастотные мерцания мы (в отличие, скажем, от стрекоз) не различаем, хотя они тоже присутствуют.

Оставим пока в стороне явление дифракции света на зрачке глаза, а также зернистость сетчатки, которые даже при отсутствии атмосферы не позволили бы нам различить реальный диск звезды или воспринять далекую звезду как точку исчезающе малого углового размера. Оба эти явления — дифракция и «пиксельная» структура сетчатки — размывают изображение звезды, но сами по себе в силу своей статичности не вызывают колебаний яркости и цвета. Однако и в том случае, если бы острота нашего зрения была фантастически высокой, мы, наблюдая сквозь атмосферу, не смогли бы различить реальные диски звезд. Дело в том, что за время одного «кадра», воспринимаемого нашим зрением (около 0,05 с), быстрое атмосферное дрожащее почти точечного изображения звезды создает вместо него «кляксу», угловой размер которой зависит от состояния атмосферы в месте наблюдения и обычно составляет от 2" до 5". Впрочем, наш глаз не различает столь малых углов. Дифракция на зрачке и неоднородность сетчатки снижают угловое разрешение нашего ночного зрения до 2–3 минут дуги, то есть примерно до 150". Так что звезду — «кляксу» размером 2–5" наш глаз воспринимает как точку, но низкочастотные колебания ее яркости глаз замечает. Они-тο и служат причиной мерцания звезд.

Все это понятно, но почему же все-таки звезды мерцают, а планеты — нет, почему при наблюдении ночного неба невооруженным глазом изображение звезды дрожит, а планета выглядит более стабильной, почти неизменной? Разумеется, преломление света в атмосфере не зависит от того, каков его источник: звезда или планета.

Рис. 7.2. Конфигурации планет, то есть их характерные положения относительно Земли и Солнца. По отношению к земному наблюдателю планета на внешней орбите может располагаться в соединении или противостоянии с Солнцем, а также в восточной или западной квадратурах. Планета на внутренней орбите может располагаться в нижнем (1) или верхнем (3) соединениях, а также в наибольшей восточной (4) или западной (2) элонгациях.

Таблица 7.1

Угловой диаметр планет, доступных по своему блеску для наблюдения невооруженным глазом

ПланетаУгловой диаметр,"
Меркурий5-13
Венера10-66
Марс4-25
Юпитер30-50
Сатурн15-20

Причина видимого различия звезд и планет в том, что угловой размер любой из ярких планет значительно больше углового размера атмосферных изображений звезд. Это видно из данных табл. 7.1, причем нужно учитывать, что меньшее значение диаметра относится к конфигурации (рис. 7.2), в которой планета не наблюдается. Для внешних планет — Марса, Юпитера и Сатурна — это эпоха соединения, когда планета располагается на небе вблизи Солнца. Для внутренних планет — Меркурия и Венеры — это эпоха верхнего соединения, когда планета также располагается вблизи Солнца, находясь за ним. Обычно внешние планеты наблюдаются вблизи их противостояния и поэтому имеют максимальный угловой размер. А внутренние планеты (особенно Меркурий) видны лишь в эпоху наибольшей элонгации, когда их диаметр составляет около половины от максимального, точнее 8–9" у Меркурия и 26" у Венеры. Не беря в расчет Меркурий (немногие его когда‑либо видели!), можно заключить, что диски ярких планет видны под углом не менее 20", что значительно превосходит размер атмосферных изображений звезд.

Таким образом, звезду наблюдаем звезду сквозь очень узкий воздушный «канал», оптические свойства которого постоянно меняются из‑за турбулентного движения воздуха. А диск планеты видим сразу через множество подобных каналов, свойства которых меняются хаотически, несогласованно. При этом, однако, угловой размер планет меньше разрешающей способности глаза, так что изображение планет, как и изображения звезд, мы воспринимаем в виде точек.

Перейти на страницу:

Похожие книги

Будущее человечества. Колонизация Марса, путешествия к звездам и обретение бессмертия
Будущее человечества. Колонизация Марса, путешествия к звездам и обретение бессмертия

Известный физик-теоретик, доктор философии и популяризатор науки дает собственный прогноз о нашем будущем. Автор этой книги уверен: совсем скоро людям придется покинуть родную планету и отправиться в космос. Потому что грядет глобальный кризис, несущий угрозу всему живому на Земле…По мнению Митио Каку, людям предстоит стать «двухпланетным видом», как когда-то метко выразился астрофизик Карл Саган. В этой книге ученый рассматривает проблемы, ждущие нас во время освоения космоса, а также возможные пути их решения.Вы узнаете, как планируется колонизировать Марс, что уже сделано для покорения этой планеты, прочтете о новейших достижениях в сфере строительства звездолетов. Ознакомитесь с прогнозом ученого о том, могут ли люди обрести бессмертие. Откроете, как в научном мире относятся к возможности существования внеземных цивилизаций. И вместе с автором поразмышляете над тем, что произойдет, когда человечество сможет выйти за пределы Вселенной…

Митио Каку , Мичио Каку

Астрономия и Космос / Педагогика / Образование и наука
Космическая академия
Космическая академия

В книге освещена малоизвестная для широкого круга читателей область космонавтики, связанная с отбором, обучением, психологической, летной и инженерной подготовкой космонавтов. Отражены практически все направления сложившейся за последние 23 лет системы подготовки космонавтов. Книга даст ясное представление о том, как воспитываются и формируются профессиональные специалисты высокого класса. Последовательно раскрыты этапы становления личности космонавта, начиная с отбора кандидатов в космонавты, прохождения ими общекосмической подготовки с привлечением различных технических средств.Для широкого круга читателей.

Владимир Николаевич Григоренко , Георгий Тимофеевич Береговой , Дарья Александровна Проценко , Иван Николаевич Почкаев , Ростислав Борисович Богдашевский

Фантастика / Любовное фэнтези, любовно-фантастические романы / Астрономия и Космос / Техника / Транспорт и авиация / Боевая фантастика / Космическая фантастика / Прочая научная литература / Образование и наука