Читаем Разведка далеких планет полностью

МАЛОЕ ТЕЛО СОЛНЕЧНОЙ СИСТЕМЫ (small Solar system body, SSSB) — объект Солнечной системы, не являющийся планетой, спутником планеты или планетой — карликом (dwarf planet). Термин принят MAC в 2006 г. Таким образом, к числу малых тел Солнечной системы попали все кометы, все классические астероиды (за исключением Цереры, отнесенной к планетам — карликам), все кентавры (centaur), движущиеся между орбитами планет — гигантов, все троянцы, движущиеся по орбитам планет синхронно с ними, а также почти все объекты за орбитой Нептуна (trans-Neptunian object), кроме объектов, отнесенных к планетам — карликам (Плутон, Эрида и др.). Все малые тела теперь делятся на две основные группы — движущиеся внутри орбиты Нептуна (cis‑Neptunian objects) и вне его орбиты (trans‑Neptunian objects, TNOs). Между до — нептуновыми и за-нептуновыми объектами также обнаружились малые тела. Речь идет не о спутниках Нептуна, а об «условно — свободных» телах — троянцах Нептуна. Но чтобы не усложнять классификацию, троянцев Нептуна отнесли к первой группе. Если не принимать во внимание астероиды Главного пояса, то нынешняя классификация малых тел выглядит так:

Cis‑Neptunian objectsОбъекты в орбите Нептуна
CentaursКентавры
Neptune TrojanТроянцы Нептуна
Trans‑Neptunian objects (TNOs)Объекты за орбитой Нептуна
Kuiper belt objects (KBOs)Объекты пояса Койпера
— Classical KBOs (Cubewanos)— Классические («кьюбивано»)
— Resonant KBOs— Резонансные
— Plutinos (2:3 Resonance)— Плутино (резонанс 2:3)
— Scattered disc objects (SDOs)Объекты рассеянного диска
Detached objectsОбособленные объекты
Oort cloud objects (OCOs)Объекты облака Оорта

МЕЗОПЛАНЕТА (mesoplanet) — объект планетного типа размером меньше Меркурия, но крупнее Цереры, т. е. примерно от 1000 до 5000 км. Термин был предложен А. Азимовым в конце 1980–х гг., но пока не получил признания. Вообще говоря, понятие «мезопланета», опирающееся только на размер/массу тела, охватывает более широкий класс объектов, чем понятие «планета — карлик», поскольку не ограничивается членами Солнечной системы и относится также и к спутникам планет.

МЕТОД УДАЧНЫХ ЭКСПОЗИЦИЙ (lucky imaging, lucky exposures) — один из методов астрофотографии, позволяющий улучшить качество изображения. Состоит в том, что производится киносъемка объекта с частотой десятки кадров в секунду. Затем из полученной серии снимков отбираются самые качественные кадры (1–2 % из всех) и суммируются друг с другом со смещением, компенсирующим атмосферное дрожание изображения как целого. Полученное изображение по качеству приближается к дифракционному пределу данного телескопа.

НУЛЬ-ИНТЕРФЕРОМЕТР — система из двух или более телескопов, способная за счет эффекта интерференции сильно ослаблять свет яркого источника, позволяя обнаруживать рядом с ним слабые объекты. При наблюдении оптические пути от каждого телескопа до их общей фокальной плоскости подбираются так, чтобы световые волны от объекта, лежащего строго на оптической оси системы, когерентно складывались в изображении и взаимно гасили, «обнуляли» друг друга. При этом яркость источников, не лежащих на оптической оси, почти не меняется, поскольку их световые волны складываются с иным сдвигом фазы.

Нуль — интерферометр особенно перспективен для изучения экзопланет. Если яркость звезды, лежащей на оптической оси, будет сильно подавлена (но не полностью, из‑за конечного размера ее изображения), то рядом с ней будет легче заметить ее планеты. При однократном наблюдении нуль — интерферометр дает интерференционную картину источников. Получив множество интерференционных картин при различных положениях телескопов, можно синтезировать двумерное изображение планетной системы с «обнуленным» изображением центральной звезды. При этом на ней могут быть и ложные изображения планет, возникающие из- за неполного заполнения общей апертуры телескопами в их различных положениях.

ПАРАЛЛАКС — видимое смещение более близкого объекта на фоне более далеких при перемещении наблюдателя с одного конца некоторой базы на другой ее конец. Например, перемещение Земли по орбите вызывает заметный годичный параллакс у близких звезд, не превышающий, однако, 1". Если угол параллакса р мал и выражен в радианах, а длина перпендикулярной к направлению на объект базы составляет В, то расстояние до объекта равно D = В/р. При фиксированной базе сам параллактический угол может служить мерой расстояния до объекта. Базой годичного параллакса служит расстояние 1 а. е.

Перейти на страницу:

Похожие книги

100 великих научных открытий
100 великих научных открытий

Астрономия, физика, математика, химия, биология и медицина — 100 открытий, которые стали научными прорывами и изменили нашу жизнь. Патенты и изобретения — по-настоящему эпохальные научные перевороты. Величайшие медицинские открытия — пенициллин и инсулин, группы крови и резусфактор, ДНК и РНК. Фотосинтез, периодический закон химических элементов и другие биологические процессы. Открытия в физике — атмосферное давление, инфракрасное излучение и ультрафиолет. Астрономические знания о магнитном поле земли и законе всемирного тяготения, теории Большого взрыва и озоновых дырах. Математическая теорема Пифагора, неевклидова геометрия, иррациональные числа и другие самые невероятные научные открытия за всю историю человечества!

Дмитрий Самин , Коллектив авторов

Астрономия и Космос / Энциклопедии / Прочая научная литература / Образование и наука
Теория струн и скрытые измерения Вселенной
Теория струн и скрытые измерения Вселенной

Революционная теория струн утверждает, что мы живем в десятимерной Вселенной, но только четыре из этих измерений доступны человеческому восприятию. Если верить современным ученым, остальные шесть измерений свернуты в удивительную структуру, известную как многообразие Калаби-Яу. Легендарный математик Шинтан Яу, один из первооткрывателей этих поразительных пространств, утверждает, что геометрия не только является основой теории струн, но и лежит в самой природе нашей Вселенной.Читая эту книгу, вы вместе с авторами повторите захватывающий путь научного открытия: от безумной идеи до завершенной теории. Вас ждет увлекательное исследование, удивительное путешествие в скрытые измерения, определяющие то, что мы называем Вселенной, как в большом, так и в малом масштабе.

Стив Надис , Шинтан Яу , Яу Шинтан

Астрономия и Космос / Научная литература / Технические науки / Образование и наука