Читаем Разведка далеких планет полностью

Чтобы выйти из кризисной ситуации, как мы уже знаем, было два пути: либо разработать новую теорию тяготения, отличную от ньютоновой, либо обнаружить неизвестное тело, которое уводит Меркурий с предсказанной для него траектории. Ученые пошли разными путями: одни пытались модифицировать теорию гравитации, другие — обнаружить неизвестное тело. На первом пути, после множества неудачных попыток, был достигнут замечательный успех — создана общая теория относительности Эйнштейна, современная теория тяготения. Но и на втором пути оказалось много интересных идей и находок, о которых неспециалистам почти ничего не известно.

Для тех исследователей, кто хотел сохранить в неизменном виде теорию Ньютона, оставалось, как это обычно бывает, тоже два пути: найти возмутителя движения Меркурия либо вне его орбиты, либо внутри нее. Поскольку вне орбиты Меркурия движутся и другие планеты, присутствие «возмутителя спокойствия» проявилось бы в их поведении. Значит, искать его следовало внутри. И вновь перед исследователями открылись два пути: либо что‑то не так с притяжением к Солнцу, либо кроме Солнца в пределах орбиты Меркурия есть неизвестные объекты. Именно это последнее предположение использовал сам Леверье, допустив существование в своей математической модели «интрамеркуриальных» планет. К ним мы еще вернемся, а пока зададимся вопросом: что может быть «не так» с притяжением Солнца?

А может быть только одно: если наше светило — не идеальный шар, то его притяжение будет меняться по довольно сложному закону, а вовсе не обратно пропорционально квадрату расстояния, как указывает прострой «школьный» закон Ньютона. А с чего бы Солнцу быть шаром? Ведь оно вращается, значит, должно быть немного сплюснуто у полюсов. Разумеется, астрономы давно поняли это и не раз пытались измерить степень сплюснутости Солнца. Первые аккуратные измерения были проведены еще в XIX в., но результата не дали: солнечный лимб не удалось отличить от идеальной окружности.

Как известно, поверхность Солнца вращается с периодом 25 суток. Если и недра нашего светила вращаются так же, то Солнце должно быть сплюснуто вдоль оси вращения менее чем на одну десятитысячную долю своего диаметра. Для земного наблюдателя это около 0,1" — величина, почти не поддающаяся измерению на неспокойном дневном небе, размывающем изображение края солнечного диска не менее чем на 3". Однако известный американский физик — экспериментатор Роберт Дикке с коллегами в конце 1960–х гг. построил специальный прибор и смог, как он считал, измерить сжатие Солнца. Но далеко не все астрофизики согласились с его выводами. Например, Г. Хилл с сотрудниками в 1974 г. также измерил видимое сжатие Солнца и показал, что если оно и существует, то его значение в несколько раз меньше найденного Дикке. Работа в этом направлении продолжается.

На очереди — измерения из космоса. Так что можно сказать, что этот путь ученые еще не прошли до конца.

Рис. 4.21. Фигуру Солнца до сих пор не удалось отличить от идеального шара. Но Солнце не может быть шаром, поскольку оно вращается!

А на втором пути, где велись поиски неизвестных объектов внутри орбиты Меркурия, еще в XIX в. рождались самые замысловатые идеи. Например, в 1846 г. голландский метеоролог Христофор Бюйс-Балло (1817–1890) обнаружил периодические изменения температуры Земли и предположил, что они связаны с наличием вокруг Солнца полупрозрачного кольца, подобного кольцу Сатурна: когда плотные части кольца затмевают для нас Солнце, Земля охлаждается. Вещество этого кольца могло бы, по мнению Бюйс — Балло, влиять своим притяжением и на движение Меркурия. Хотя в середине XIX в. к гипотезе Бюйс — Балло коллеги отнеслись прохладно (поскольку его «метеорологические» аргументы о периодических колебаниях температуры Земли оказались неубедительны), сама идея о разреженном веществе вокруг Солнца впоследствии всплывала еще не раз. Собственно, в существовании этого вещества сомнений не было: при полных затмениях Солнца оно наблюдалось в виде солнечной короны, а также создавало эффект зодиакального света, очевидно, рассеянного околосолнечными пылинками. Вопрос состоял в количестве этого вещества: достаточно ли велика его масса для влияния на Меркурий? На том, что его достаточно, еще в 1906 г. настаивал немецкий астроном Хуго Зелигер (1849–1924).

Американский математик и астроном Дэниел Кирквуд (1814–1895) много лет изучал движение астероидов в пространстве между Марсом и Юпитером. Он обнаружил любопытные закономерности в расположении их орбит, которые натолкнули его на мысль, что орбиты некоторых астероидов могли бы располагаться также и в пространстве между Меркурием и Солнцем. При достаточном количестве такие астероиды заметно влияли бы на движение Меркурия.

Перейти на страницу:

Похожие книги

Будущее человечества. Колонизация Марса, путешествия к звездам и обретение бессмертия
Будущее человечества. Колонизация Марса, путешествия к звездам и обретение бессмертия

Известный физик-теоретик, доктор философии и популяризатор науки дает собственный прогноз о нашем будущем. Автор этой книги уверен: совсем скоро людям придется покинуть родную планету и отправиться в космос. Потому что грядет глобальный кризис, несущий угрозу всему живому на Земле…По мнению Митио Каку, людям предстоит стать «двухпланетным видом», как когда-то метко выразился астрофизик Карл Саган. В этой книге ученый рассматривает проблемы, ждущие нас во время освоения космоса, а также возможные пути их решения.Вы узнаете, как планируется колонизировать Марс, что уже сделано для покорения этой планеты, прочтете о новейших достижениях в сфере строительства звездолетов. Ознакомитесь с прогнозом ученого о том, могут ли люди обрести бессмертие. Откроете, как в научном мире относятся к возможности существования внеземных цивилизаций. И вместе с автором поразмышляете над тем, что произойдет, когда человечество сможет выйти за пределы Вселенной…

Митио Каку , Мичио Каку

Астрономия и Космос / Педагогика / Образование и наука
Космическая академия
Космическая академия

В книге освещена малоизвестная для широкого круга читателей область космонавтики, связанная с отбором, обучением, психологической, летной и инженерной подготовкой космонавтов. Отражены практически все направления сложившейся за последние 23 лет системы подготовки космонавтов. Книга даст ясное представление о том, как воспитываются и формируются профессиональные специалисты высокого класса. Последовательно раскрыты этапы становления личности космонавта, начиная с отбора кандидатов в космонавты, прохождения ими общекосмической подготовки с привлечением различных технических средств.Для широкого круга читателей.

Владимир Николаевич Григоренко , Георгий Тимофеевич Береговой , Дарья Александровна Проценко , Иван Николаевич Почкаев , Ростислав Борисович Богдашевский

Фантастика / Любовное фэнтези, любовно-фантастические романы / Астрономия и Космос / Техника / Транспорт и авиация / Боевая фантастика / Космическая фантастика / Прочая научная литература / Образование и наука