Рассматриваемые здесь «Диалектика числа у Плотина» и «Критика платонизма у Аристотеля» (далее будем сокращать для удобства – «Диалектика» и «Критика») объективно предстают перед нами в контексте других лосевских работ, на страницах которых тема числа не раз получала почетное место. Прежде всего – на фоне тех знаменитых восьми книг, что последовательно печатались с 1927 по 1930 год. Здесь вырисовывается целая философия математики, которая складывается из прихотливой мозаики многочисленных фрагментов (их суммарное изучение – задача особого исследования). Однако автора «восьмикнижия» никак нельзя заподозрить в каком-то сознательном импрессионизме. То было не эстетство, но вынужденная необходимость. Прежде всего Лосев очень спешил напечатать свои труды (жизнь доказала, сколь была оправдана эта спешка), потому и пользовался любой возможностью наступать сразу на нескольких фронтах и, уплотняя текстовые пространства, насыщал их приложениями, развернутыми примечаниями, вставными темами и экскурсами. Этим объясняется, в частности, появление обширного отрывка из «Эннеад» Плотина при издании «Музыки как предмета логики», что предвосхищало последующий выход полного перевода и комментария трактата VI.6 в «Диалектике», этим же объясняется существенное повторение положений дискуссии об «идеальных» и «математических» числах из «Критики» в более поздних (по выходным данным) «Очерках античного символизма и мифологии» (
Теперь мы можем частично реконструировать целый перечень неизданных и (или) утраченных лосевских материалов относительно «чисел». Так, Лосев определенно как о реализованном пишет в «Критике» о своем «специальном исследовании понятия числа в античной философии» (
2. Платонизм в обороне и в наступлении
Эти две книги близки уже по формальным приметам. Их объединяет однотипность названий, строгая жанровая очерченность, заявленная одинаковыми подзаголовками, относительно малый в сравнении с другими составными частями «восьмикнижия» объем, а также близость времени публикации и, видимо, написания. Однако с еще большей очевидностью эти тексты сочетаются в пространстве смысла, где они, если допускать математизированную семантику уподобления, представляют две комплексно сопряженные точки. Как известно, в арифметике комплексных чисел сопряженными называются числа, точно совпадающие по действительным своим частям и различающиеся только противоположными знаками при мнимых частях, а потому они образуют пару, симметричную относительно действительной оси. Ниже мы попробуем сделать этот образ более содержательным и конкретным.