античного числа. «Всегдашний античный напор на число» сводится прежде всего к особенности мироощущения античного грека, готового неустанно обнаруживать в наблюдаемом и мыслимом своем окружении отчетливейшие, оптически данные (вплоть до скульптурной выпуклости) структуры. Недаром Лосев пишет о неистребимой пифагорейско-платоновской традиции, даже о потребности всей античной философии «мыслить всю действительность исключительно только структурно», а потому и призывает возникающую здесь «арифметику» считать именно структурологией – в самом точном и современном смысле этого слова 16. Присовокупим к сказанному недавние наблюдения в рамках «генетической эпистемологии» (психологическая школа Ж. Пиаже), согласно которым усвоение понятия числа возникает у детей сначала (в возрасте между 4 и 7 годами) в результате логических операций группировки и упорядочения объектов, т.е. через структурирование, а только потом (к 7 – 8 годам) проявляются навыки привычного счета посредством представления об «n + 1». Если могут быть интересны параллели, то параллель между детством человека и античностью, «детством человечества» в указанном контексте является самой поучительной.
Регулятивно-управляющая функция
античного числа. Число пронизывает весь мир, как неживой, так и живой, включая человека и человеческое сообщество. Под фантастической подчас внешностью античной «математизации» бытия скрывается серьезная потребность точного охвата действительности во всех ее проявлениях, и не в последнюю очередь – с видом на оптимизацию практической деятельности. Античное число «понимается как модель-регулятор всего бытия», заключает Лосев по поводу «числовой мистики» Платона и всерьез предлагает находить у античного мыслителя приемы и методы кибернетики или даже «считать Платона безусловно отцом или прародителем» 17 этой науки. Остается разве что, к случаю, напомнить много говорящие названия революционных книг Норберта Винера – «Кибернетика, или Управление и связь в животном и машине» и «Кибернетика и общество», – да еще подчеркнуть, что Винер и не скрывал, что свою «теорию управления и связи в машинах и живых организмах» он возводил к термину «кибернетика», каковым именно Платон называл искусство управлять кораблем.
Иерархийно-порождающая функция
античного числа. Греческая мысль не пассивна и созерцательна, но активна и объясняюща. Она не просто замечает структуры мира, но и видит их многоярусность, выводя ее, исходя из самых первых оснований – посредством диалектики одного и иного, предела и беспредельного, сущего и меона, целого и части. Число, как пишет современный знаток этого метода, «очерчивает определенные границы в первоедином, как бы набрасывая на его сплошную и неразличимую массу смысловую сетку и соотносящие координаты» («Диалектика», 65), число это строится не механическим наращиванием однородных единиц, но расчленением и саморазделением органического единства. Число, если оно составлено механической суммой, беспамятно и мертво, число органического единства хранит изначальную жизнь – это открытие античного гения в новых условиях и на ином понятийном языке воскресает в основе современного системного подхода (или системных исследований). Впрочем, если основной системный постулат ныне требует, чтобы целое было превыше своих частей, то любой древний грек точно знал и нечто еще, твердя поговорку: «Больше бывает, чем всё, половина» (Гесиод. Труды и дни, ст. 40).
Актуальная бесконечность
античного числа. Можно сколько угодно увеличивать или уменьшать числа в их меонально-низшем определении, т.е. оперируя с количествами 18. В замкнутости же и совершенстве смысловых структур все эти числа, «если их брать самих по себе, не увеличиваемы и не уменьшаемы», ибо как, спрашивается в «Диалектике», на самом деле «можно увеличить или уменьшить тройку?» (86). Для всякого числа «быть ограниченным значит быть самим собой, не растекаться в чувственной беспредельности и быть беспредельно-сущим, бесконечно-мощным в проявлении себя как определенного смысла» (88) – так читаем мы там же вслед за Плотином и Лосевым и должны теперь вспомнить об актуальных бесконечностях в теории множеств. Создатель ее Георг Кантор мечтал применить свои результаты о «точечных множествах» и «порядковых типах многократно упорядоченных множеств» для естественного описания структур как неживых, так и живых объектов и даже «для получения безупречного объяснения природы» 19. Несомненно, ему прибавило бы мужества знакомство с философией Прокла, и в особенности с его представлениями о «мировых чинах» вездесущих «богов-чисел», охватывающих всё существующее (как же, «всё полно богов!») своими числовыми оформлениями – настоящими актуальными бесконечностями разнообразных типов (см.: «Диалектика», 127, 140 – 143).